第二章 非相对论粒子波函数和 Schrödinger 方程
Born 的统计解释
一个非相对论粒子的波函数 \(\psi(x,y,z, t)\) 是一个单值、连续的可归一化的复函数,描述了 \(t\) 时刻在空间中某一点 \((x,y,z)\) 处该粒子出现的概率密度.
根据统计解释有如下结论
1. 概率
\(|\psi(\boldsymbol{r},t)|^2\) 是指在 \(t\) 时刻,粒子出现在 \(\boldsymbol{r}\) 处的概率密度.
2. 归一化
\(\displaystyle\int_V|\psi(\boldsymbol{r}, t)|^2\mathrm{d}^3\boldsymbol{r}=1\),要求 \(\psi(x,y,z, t)\) 是平方可积函数.
3. 力学量的期望
\[
\displaystyle\langle f(\boldsymbol{r})\rangle=\frac{\displaystyle\int_{-\infty}^{+\infty}f(\boldsymbol{r})|\psi(\boldsymbol{r})|^2\mathrm{d}^3\boldsymbol{r}}{\displaystyle\int_{-\infty}^{+\infty}|\psi(\boldsymbol{r})|^2\mathrm{d}^3\boldsymbol{r}}\]
- 归一化常数和相角的不确定性
\(\psi\) 和 \(Ae^{\mathrm{i}\alpha}\psi\) 描述同一个体系(仅限于统计解释).
- 多粒子体系
\(N\) 个粒子 \(|\psi(\boldsymbol{r}_1,\boldsymbol{r}_2,\cdots,\boldsymbol{r}_N)|^2 \mathrm{d}\boldsymbol{r}_1\mathrm{d}\boldsymbol{r}_2\cdots \mathrm{d}\boldsymbol{r}_N\) 表示第 \(i\) 个粒子处在 \(\boldsymbol{r}_i\rightarrow\boldsymbol{r}_i+\mathrm{d}\boldsymbol{r}_i\) 的概率.
- 波函数的参数可以是其他物理量
态叠加原理
量子力学的态叠加原理
Note
若 \(\psi_1,\psi_2\cdots,\psi_n\) 为体系的可能状态,则 \(c_1\psi_1+c_2\psi_2+\cdots+c_n\psi_n\) 也为体系的可能状态.
可用特定的基矢来表示任意的波函数.
\[\displaystyle\psi(\boldsymbol{r},t)=\frac{1}{(2\pi\hbar)^\frac{3}{2}}\int\phi(\boldsymbol{p},t)e^{-\frac{\mathrm{i}}{\hbar}(Et-\boldsymbol{p\cdot r})}\mathrm{d}^3\boldsymbol{p}\]
\[\displaystyle\phi(\boldsymbol{p},t)=\frac{1}{(2\pi\hbar)^\frac{3}{2}}\int\psi(\boldsymbol{r},t)e^{\frac{\mathrm{i}}{\hbar}(Et-\boldsymbol{p\cdot r})}\mathrm{d}^3\boldsymbol{r}\]
\(|\phi(\boldsymbol{p},t)|^2d\boldsymbol{p}\) 表示具有特定动量大小的概率。
Schrödinger 方程
坐标空间的 Schrödinger 方程
\[\displaystyle i\hbar\frac{\partial}{\partial t}\psi(\boldsymbol{x},t)=\left[-\frac{\hbar^2}{2m}\nabla^2+\hat{V}(\boldsymbol{x})\right]\psi(\boldsymbol x,t)\]
用 Hamiltonian 算符表示的 Schrödinger 方程 (General)
\[\displaystyle i\hbar\frac{\partial}{\partial t}\psi=\hat{H}\psi\]
Schrödinger 方程是量子力学的基本假设之一。
\(\psi\left( \boldsymbol{x} \right)|_{x \to \infty} \to 0\) 束缚态 bound state
平面波
\(1-\dim \psi\left( \boldsymbol{x} \right)=A \mathrm{e}^{\mathrm{i}(\boldsymbol{k}\cdot \boldsymbol{x}-\omega t)}=A \mathrm{e}^{\frac{\mathrm{i}}{\hbar}(\boldsymbol{p}\cdot \boldsymbol{x}-Et)}\)
\(|\phi(\boldsymbol{x})|^{2}=|A|^2\) 不可归一化
归一化和束缚态归一化不一样,称为散射态 Scattering State
非相对论粒子
自由粒子 \(\displaystyle E=\frac{\boldsymbol{p}}{2m}\) , 平面波 \(\psi(\boldsymbol{r},t)=A \mathrm{e}^{\frac{\mathrm{i}}{\hbar}(\boldsymbol{p}\cdot \boldsymbol{r}-Et)}\)
\(\displaystyle \mathrm{i}\hbar\frac{\partial }{\partial t}\) 作用在 \(\psi(\boldsymbol{r},t)\) 上 \(\implies E\psi(\boldsymbol{r},t)\), \(-\mathrm{i}\hbar \nabla\) 作用在 \(\psi(\boldsymbol{r},t)\) 上 \(\implies\boldsymbol{p}\psi(\boldsymbol{r},t)\)
\[\displaystyle \mathrm{i}\hbar\frac{\partial }{\partial t}\psi(\boldsymbol{r},t)=\frac{(-\mathrm{i}\hbar\nabla)(-\mathrm{i}\hbar\nabla)}{2m}\psi(\boldsymbol{r},t)=-\frac{\hbar ^{2}}{2m}\nabla^{2}\psi(\boldsymbol{r},t)\]
平面波叠加成波包(自由粒子)
\[
\displaystyle \psi(\boldsymbol{r},t)=\frac{1}{(2\pi\hbar)^{\frac{3}{2}}}\int \phi(\boldsymbol{p},t)\mathrm{e}^{\frac{\mathrm{i}}{\hbar}(\boldsymbol{p}\cdot \boldsymbol{r}-Et)}\rm d^{3}\boldsymbol{p}\]
对于有势场的情形 \(V(\boldsymbol{r})\), Schrödinger 方程
\[
\displaystyle \mathrm{i}\hbar\frac{\partial}{\partial t}\psi(\boldsymbol{x},t)=\left[-\frac{\hbar^2}{2m}\nabla^2+\hat{V}(\boldsymbol{x})\right]\psi(\boldsymbol x,t)\]
可推广至多粒子体系(\(N\) 粒子体系)\(\psi(\boldsymbol{r_1},\cdots \boldsymbol{r_n},t)\)
\[
\displaystyle \mathrm{i}\hbar\frac{\partial }{\partial t}\psi(\boldsymbol{r_1},\cdots \boldsymbol{r_n},t)=\left[\sum_{i}-\frac{\hbar^2}{2m_i}\nabla_i^2+\hat{V}(\boldsymbol{r_1},\cdots \boldsymbol{r_n})\right]\psi(\boldsymbol x,t)\]
定域的概率流守恒
归一化的属性不随时间变化
考虑 \(1-\dim\) 问题,且势场为实数即 \(V(\boldsymbol{x})=V^\ast(\boldsymbol{x})\) 概率密度 \(\rho(x)=\psi^\ast(x,t)\psi(x,t)= \left| \psi(x,t) \right|^{2}\)
\[
\frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{+\infty} \rho(x) \mathrm{d}=\frac{\mathrm{d}}{\mathrm{d}t}\int_{-\infty}^{+\infty}\psi^\ast(x,t)\psi(x,t)\mathrm{d}x\qquad\frac{\partial }{\partial t}\psi^\ast\psi=\psi^\ast\frac{\partial \psi}{\partial t}+\frac{\partial \psi^\ast}{\partial t}\psi\]
由 Schrödinger 方程得
\[
\begin{aligned}
\frac{\partial }{\partial t}\psi(x,t)=\frac{1}{\mathrm{i}\hbar}\left[ -\frac{\hbar^2}{2m} \frac{\partial ^2}{\partial x^{2}}+V(x)\right] \psi(x,t)\\=\frac{\mathrm{i}\hbar}{2m}\frac{\partial ^{2}\psi(x,t)}{\partial x^{2}}-\frac{\mathrm{i}}{\hbar}V(x)\psi(x,t)
\end{aligned}\]
同理
\[
\frac{\partial \psi^\ast}{\partial t}=-\frac{\mathrm{i}\hbar}{2m}\frac{\partial ^{2}\psi^\ast}{\partial x^{2}}+\frac{\mathrm{i}}{\hbar}V(x)\psi\ast\]
则
\[
\begin{aligned}
\frac{\partial }{\partial t}\left| \psi(x,t) \right|^{2}=\frac{\mathrm{i}\hbar}{2m} \left[\psi^\ast\frac{\partial ^{2}\psi}{\partial x^{2}}-\frac{\partial ^{2}\psi^\ast}{\partial x^{2}}\psi\right]\\
=\frac{\partial }{\partial x}\frac{\mathrm{i}\hbar}{2m}\left( \psi^\ast\frac{\partial \psi}{\partial x}-\frac{\partial \psi^\ast}{\partial x}\psi\right) \\
=-\frac{\partial }{\partial x}\frac{\mathrm{i}\hbar}{2m}\left( \frac{\partial \psi^\ast}{\partial x}\psi-\psi^\ast\frac{\partial \psi}{\partial x}\right)
\end{aligned}\]
若取 \(\displaystyle j(x,t)=\frac{\partial }{\partial x}\frac{\mathrm{i}\hbar}{2m}\left( \frac{\partial \psi^\ast}{\partial x}\psi-\psi^\ast\frac{\partial \psi}{\partial x}\right)\) ,则有守恒流方程 \(\displaystyle \frac{\partial \rho(x,t)}{\partial t}+\frac{\partial }{\partial x}j(x,t)=0\)
推广至 \(3-\dim\) 情况则有 \(\displaystyle \color{red}\frac{\partial \rho(\boldsymbol{x},t)}{\partial t}+\nabla\cdot \boldsymbol{j}(\boldsymbol{x},t)=0\color{red}\) 称为概率流
对全空间积分
\[
\frac{\partial }{\partial t}\int_{\infty}\rho(\boldsymbol{r},t ) \mathrm{d}^3\boldsymbol{r}=-\int_{\Omega}^{} \boldsymbol{j}\cdot \mathrm{d}\boldsymbol{S}\]
即 Schrödinger 方程满足概率守恒(实数势)
若为复数势,取 \(V(x)=V_R(x)-\mathrm{i}\Gamma/2\),重复之前的计算可得
\[
\frac{\partial \rho(x,t)}{\partial t}=-\frac{\partial j(x,t)}{\partial x}-\frac{\Gamma}{\hbar}\rho(x,t)\]
对全空间积分则有 (\(\tau_D\) 为粒子寿命)
\[
P(t)=\int_{-\infty}^{+\infty} \rho(x,t) \mathrm{d}x
\frac{\mathrm{d}P(t)}{\mathrm{d}t}=-\frac{\Gamma}{\hbar}P(t)=-\lambda_DP(t)=-\frac{1}{\tau_D}P(t)\]
即
\[
P(t)=P(0)\mathrm{e}^{-\lambda_Dt}=P(0)\mathrm{e}^{-t/\tau_D}\]
由 \(\hat{p}=-\mathrm{i}\hbar\nabla\) , 可得 \(\displaystyle \boldsymbol{j}=\operatorname{Re}(\psi^\ast\frac{\hat{p}}{m}\psi)\)
用 \(\psi(\boldsymbol{r},t)\) 描述体系,物理量 \(\implies\) 算符
\[
\begin{aligned}
\boldsymbol{p}\to \hat{p}&=-\mathrm{i}\hbar\nabla \\
E\to \hat{H}&=-\frac{\hbar^{2}}{2m}\nabla^{2}+V(r)\\
L\to \hat{L}&=\hat{r} \times \hat{p}=\hat{r} \times (-\mathrm{i}\hbar\nabla)
\end{aligned}\]
矩阵力学物理量 \(\to\) 算符状态 \(\to\) 态矢
矢量空间 : 无限维复矢量空间 Hilbert 空间
一般的 \(\psi(x,t) \displaystyle \psi(x,t)=\sum_{i}c_i \psi_i(x,t)\),其中 \(\hat{H}\psi_i(x,t)=E_i\psi_i(x,t)\)。
定态 Schrödinger 方程 Stationary Equation
\(V(x)\) 不显含 \(t\)
分离变量法
\(\psi(x,t)=\phi(x)f(t)\),代入 Schrödinger 方程
\[
\mathrm{i}\hbar\frac{\partial }{\partial t}\left[ \phi(x)f(t) \right] =\left[-\frac{\hbar^{2}}{2m}\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}+V(x) \right] \phi(x)f(t)\]
\[
\frac{\mathrm{i}\hbar}{f(t)}\frac{\mathrm{d}f(t)}{\mathrm{d}t}=\frac{1}{\phi(x)}\left[ -\frac{\hbar^{2}}{2m}\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}+V(x) \right]\phi(x)=E\]
即
\[
\left\{
\begin{aligned}
\mathrm{i}\hbar\frac{\mathrm{d}f(t)}{\mathrm{d}t}&=Ef(t) \\
\left[ -\frac{\hbar^{2}}{2m}\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}+V(x)\right] \phi(x)&=\hat{H}\phi(x)=E\phi(x)
\end{aligned}
\right.\]
- \(\displaystyle f(t)=C\mathrm{e}^{-\frac{\mathrm{i}}{\hbar}Et}\implies \psi(x,t)=\phi(x)\mathrm{e}^{-\frac{\mathrm{i}}{\hbar}Et}=\phi(x)\mathrm{e}^{-\mathrm{i}\omega t}\)
- \(\hat{H}\phi_E(x)=E\phi_E(x)\) 本征值方程, \(\phi_E(x)\) 是本征值为 E 的本征函数 (本征矢)。
对应了一个确定能量 \(E\) 的一个波函数 \(\phi_E\) 称为定态波函数, 态称为定态。
则 \(\displaystyle \psi (x, t)=\phi_E (x)\mathrm{e}^{-\frac{\mathrm{i}}{\hbar}Et}\)
在定态下测量一个力学量 \(F (\hat{F})\)
\(\displaystyle \left<F \right>=\int\psi^\ast(x,t)\hat{F}\psi(x,t)\mathrm{d}x=\left<F \right>_{(0)}\) 不随时间改变
\(V(x)\) 的连续性与,\(\phi(x)\)、\(\phi^{\prime}(x)\) 的连续性
\(\displaystyle\phi^{\prime\prime}(x)=-\frac{2m(E-V(x))}{\hbar^{2}}\phi(x)\)
- 若 \(V(x)\) 连续, 则 \(\phi(x)\) 以及 \(\phi^{\prime}(x)\) 都连续
- 若 \(V(x)\) 在某一点处间断则 \(\phi(x)\)、\(\phi^{\prime}(x)\) 也连续
- 若 \(V(x)\) 存在一阶奇点,则 \(\phi(x)\) 连续 \(\phi^{\prime}(x)\) 不连续
一维势阱
一维无限深势阱 Potential well
![[QM2.1.svg|#invert|600]]
在区间 \(-a<x<a\)
满足定态 Schrödinger 方程
\[
-\frac{\hbar^{2}}{2m}\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}\psi(x)=E\psi(x)\]
令 \(\displaystyle k^{2}=\frac{2mE}{\hbar^{2}}\), 则有 \(\psi^{\prime\prime}+k^{2}\psi(x)=0\), 可设解为 \(\psi(x)=A\sin kx+B\cos kx\)
加上边界条件 \(\psi(-a)=\psi(a)=0\)
则有
\[
\left\{\begin{aligned}
-A\sin ka+B\cos ka=0 \\
A\sin ka+B\cos ka=0
\end{aligned} \right.\longrightarrow \begin{aligned}
A\sin ka=0 \\
B\cos ka=0
\end{aligned}\]
可得
1. \(\displaystyle A=0\,,B\neq 0 \,,\cos ka=0 \,,ka=\frac{\pi}{2}n(n=2m+1,m \in \mathbb{N})\)
2. \(\displaystyle A\neq 0\,,B=0 \,,\sin ka=0 \,,ka=\frac{\pi}{2}n(n=2m,m \in \mathbb{N})\)
则 \(\displaystyle k_{n}=\frac{n\pi}{2a}\,(n \in \mathbb{N})\) 对应能量本征值 \(\displaystyle E_n=\frac{\hbar^{2}k_n^2}{2m}=\frac{n^{2}\hbar^{2}\pi^{2}}{8ma^{2}}\,(n \in \mathbb{N})\)
波函数为
\[
\left\{
\begin{aligned}
\psi_n(x)=A\sin kx=A\sin \frac{n\pi x}{2a}\,\,(n=2,4,\cdots ) \\
\psi_n (x)=B\cos kx=B\cos \frac{n\pi x}{2a}\,\, (n=1, 3,\cdots )
\end{aligned}
\right.\]
归一化
\(\displaystyle\int_{-a}^{a} \psi^*_n (x)\psi_n (x) \mathrm{d}=1,\,\,\implies A=B= \sqrt{\frac{1}{a}}\)
归一化的波函数为
\[
\left\{
\begin{aligned}
\psi_n(x)=\sqrt{\frac{1}{a}}\sin \frac{n\pi x}{2a}\,\,(n=2,4,\cdots ) \\
\psi_n(x)=\sqrt{\frac{1}{a}}\cos \frac{n\pi x}{2a}\,\,(n=1,3,\cdots )
\end{aligned}
\right.\]
基态 \(\displaystyle E_1=\frac{\hbar^{2}\pi^{2}}{8ma^{2}}\) Ground State ,第一激发态 \(\displaystyle E_2=\frac{\hbar^{2}\pi^{2}}{2ma^{2}}\)。
由此可得到以下的结论
- \(E_{n} \propto n^{2}\)
- knot point (节点) 依次增加.
\(\displaystyle \int_{-\infty}^{+\infty}\psi ^\ast_{i}(x)\psi_{j}(x) \mathrm{d}x=\delta_{ij}\) 正交归一 Orthonormal.
- 基态 \(\displaystyle \lambda_{1}=4a ,p_{1}=\frac{h}{4a}=\frac{\pi\hbar}{2a},E_{1}=\frac{\pi ^{2}\hbar ^{2}}{8ma^{2}}\)
\(\(\begin{aligned} \psi_{1}(x,t)=\sqrt{\frac{1}{a}}\mathrm{e}^{-\mathrm{i}E_{1}t/ \hbar} \cos \frac{\pi x}{2a}&=\frac{1}{2}\sqrt{\frac{1}{a}} \mathrm{e}^{-\mathrm{i}E_{1}\frac{t}{\hbar}} (\mathrm{e}^{\mathrm{i}kx}+\mathrm{e}^{-\mathrm{i}kx}) \\ &=\frac{1}{2}\sqrt{\frac{1}{a}}[\mathrm{e}^{\mathrm{i}(kx-\omega_1 t)}+\mathrm{e}^{-\mathrm{i}(kx+\omega_1 t)}] \end{aligned}\)\)
- \(n \to \infty ,\,\,\lambda_n=2a/n \longrightarrow\) Classical Situation.
- 一般的波函数
\[
\psi_i(x,t)=\sqrt{\frac{1}{a}}\mathrm{e}^{-\mathrm{i}\omega_i t/ \hbar}
\left\{
\begin{aligned}
\cos \frac{\pi x}{2a}n\quad n=1,3,5\cdots\\
\sin \frac{\pi x}{2a}n \quad n=2,4,6\cdots
\end{aligned}
\right.\]
对于一般 \(t=0\) 时刻的波函数 \(\psi(x,0), \displaystyle \psi(x,0)=\sum_{i}c_{i}\psi_{i}(x)\)
\[
\int_{-a}^{a} \psi^\ast_i\psi(x,o) \mathrm{d}x=\int_{-a}^{a}
\psi^\ast_i \sum_{j}c_{j}\psi_{i}(x)\mathrm{d}x=\sum_{j}c_{j}\int_{-a}^{a}
\psi^\ast_i \psi_{i}(x)\mathrm{d}x=c_i\]
对于任意时刻的波函数 \(\displaystyle \psi(x,t)=\sum_{i}c_{i}(t)\psi_{i}(x),\) 代入 Schrödinger 方程
\[
\mathrm{i}\hbar\sum_{i}\dot{c}{i}(t)\psi{i}(x)
=\hat{H}\psi(x,t)=\sum_{i}c_{i}(t)\hat{H}\psi_{i}(x)
=\sum_{i}c_{i}(t)E_{i}\psi_{i}(x)\]
用 \(\psi^\ast_j(x)\) 乘等式两边并积分得
\[
\begin{aligned}
LHS:\int_{-a}^{a}\psi^\ast_j(x)\mathrm{i}\hbar\sum_{i}\dot{c}{i}(t)
\psi{i}(x) \mathrm{d}x =\mathrm{i}\hbar\dot{c}{j}(t)\\
RHS:\int{-a}^{a}\psi^\ast_j(x)\sum_{i}c_{i}(t)E_{i}\psi_{i}(x)
\mathrm{d}x =\mathrm{i}\hbar c_{j}E_j
\end{aligned}
\implies \mathrm{i}\hbar\dot{c}_j(t)=E_jc_j(t)\]
即
\[
c_j(t)=c_j \mathrm{e}^{-i E_j t /\hbar}\]
故
\[
\psi(x,t)=\sum_{i}c_i\mathrm{e}^{-i E_i t /\hbar} \psi_i(x)
=\sum_{i}c_i\mathrm{e}^{-i \omega_i t} \psi_i(x)\]
- 测量能量 \(E\)
对于定态 \(\psi_i(x,t)=\mathrm{e}^{-\mathrm{i}E_i t /\hbar}\phi_i(x),\hat{H}\phi_i(x)=E_i\phi(x)\)
\[
\left<E \right> = \int_{-a}^{a} \psi^\ast_i(x,t)\hat{H}\psi_i(x,t) \mathrm{d}x=E_i\]
为唯一确定的值.
对于一般态, 在特定时刻 \(t=0 ,\psi(x)=\sum_{i}c_i\phi_i(x)\)
\[
\begin{aligned}\left<E \right>=\int_{-a}^{a} \psi^\ast(x)\hat{H}\psi(x) \mathrm{d}x&=
\int_{-a}^{a} \sum_{i}c^\ast_i\phi^\ast_i(x) \hat{H}\sum_{j}c_j\phi_j(x)\mathrm{d}x\\&=\sum_{i}\sum_{j}c^\ast_i c_j\int_{-a}^{a} \phi^\ast_i(x)\hat{H}\phi_j(x) \mathrm{d}x
=\sum_{i}\sum_{j}c^\ast_ic_jE_j\delta_{ij}\\
&=\sum_{i}c^\ast_ic_iE_i=\sum_{i}\left| c_i \right|^{2}E_i
\end{aligned}\]
- 简并 degeneracy 当一个本征值对应多个线性无关的本征函数时称为简并.
一维束缚态波函数的能级无简并
\(1-\dim\) bound state
设线性无关的波函数 \(\psi_{1,2}\) 对应相同的能量本征值 \(E\), 那么
\[
\psi_1\psi^{\prime}_2-\psi^{\prime}_1\psi_2=\text{constant}\]
i.e. Prove \((\psi_1\psi^{\prime}_2-\psi^{\prime}_1\psi_2)^{\prime}=\psi_1\psi^{\prime\prime}_2-\psi^{\prime\prime}_1\psi_2=0,\) 代入 Schrödinger 方程即证.
若一维 bound state 存在简并, \(\psi_{1,2}\) 对应的能量本征值为 \(E\)
则 \(\psi_1\psi^{\prime}_2-\psi^{\prime}1\psi_2=\text{constant}=0(\psi(x)|{x \to \infty}=0)\), 即 \(\psi_1\psi^{\prime}_2=\psi^{\prime}1\psi_2\)
即 \((\ln \psi_1)^\prime=(\ln \psi_2)^\prime\implies\psi_1=C\psi_2\) 故 \(\psi_{1,2}\)
不独立, 即**一维束缚态不存在简并**.
能量为 \(E\) 的自由粒子存在简并.
简并度 \(\longleftrightarrow\hat{H}\) 的对称性或体系的对称性
\(\color{red}\) 对称性 \(\implies\) Group theory 群论, 群, 表示
\(1-\dim\) : 反演 Reflection 、平移 Translation
\(2-\dim, 3-\dim\) :Degeneracy
氢原子能级有简并度
- 对于对称势 \(V (x)=V (-x)\) 体系的波函数具有特定的奇偶性
\[
\displaystyle\hat{H}=-\frac{\hbar^{2}}{2m}\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}+V(x)\]
做对称变换 \(\hat{H}(x)=\hat{H}(-x)\), 则 \(\psi(x)=C\psi(-x)=C^2\psi(x)\)
则 \(C=\pm_1,\,\,\psi(x)=\pm\psi(-x)\)
一维有限深势阱
束缚态, 设 \(E<V_0\), 在三个区间内的波函数分别为 \(\psi_{1,2,3}(x)\), 分别满足 Schrödinger 方程
\[
\left\{
\begin{aligned}
-\frac{\hbar^{2}}{2m}&\frac{\mathrm{d}^{2}\psi_{1}(x)}{\mathrm{d}x^{2}}
+V_0\psi_{1}(x)&=E\psi_{1}(x)
\\
-\frac{\hbar^{2}}{2m}&\frac{\mathrm{d}^{2}\psi_{2}(x)}{\mathrm{d}x^{2}}
&=E\psi_{2}(x)
\\
-\frac{\hbar^{2}}{2m}&\frac{\mathrm{d}^{2}\psi_{3}(x)}{\mathrm{d}x^{2}}
+V_0\psi_{3}(x)&=E\psi_{3}(x)
\end{aligned}\right.\]
令 \(\displaystyle k=\sqrt{\frac{2mE}{\hbar^{2}}},k^{\prime}=\sqrt{\frac{2m(V_0-E)}{\hbar^{2}}},\) 则有
\[
\left\{
\begin{aligned}
\psi^{\prime\prime}_{1,3}(x) -k^{\prime 2}\psi_{1,3}(x)=&0\to
\psi_{1,3}(x)\sim\mathrm{e}^{\pm k^\prime x}
\\
\psi^{\prime\prime}_{2}(x)+k^{2}\psi_{2}(x) =&0
\to \psi_{2}(x)\sim \{\cos kx ,\sin kx\}
\end{aligned}
\right.\]
对于束缚态 \(\psi_{1}(-\infty)=0,\,\,\psi_{3}(+\infty)=0\), 故解可设为
\[
\left\{
\begin{aligned}
\psi_{1}(x)=&A\mathrm{e}^{ k^\prime x},\\
\psi_{2}(x)=&B \cos kx +C\sin kx,\\
\psi_{3}(x)=&D\mathrm{e}^{- k^\prime x}
\end{aligned}\right.\]
加上边界条件
\[
\left\{
\begin{aligned}
\psi_{1}(-a)=\psi_{2}(-a),\,\,\psi_{2}(a)=\psi_{3}(a) \\
\psi^\prime_{1}(-a)=\psi^\prime_{2}(-a),\,\,\psi^\prime_{2}(a)=\psi^\prime_{3}(a)
\end{aligned}
\right.\]
可以得到关于 \(A,B,C,D\) 的方程组
\[
\left\{
\begin{aligned}
A \mathrm{e}^{-k^\prime a}=&B\cos ka -C\sin ka\\
D\mathrm{e}^{-k^\prime a}=&B\cos ka +C\sin ka\\
Ak^{\prime} \mathrm{e}^{-k^\prime a}=&Bk\sin ka +Ck\cos ka\\
-Dk^{\prime} \mathrm{e}^{-k^\prime a}=&-Bk\sin ka +Ck\cos ka
\end{aligned}
\right.\]
即
\[
\begin{pmatrix}
\mathrm{e}^{-k^\prime a}& -\cos ka& \sin ka &0\\
0& \cos ka & \sin ka&-\mathrm{e}^{-k^\prime a} \\
k^\prime\mathrm{e}^{-k^\prime a}& -k\sin ka&-k\cos ka &0 \\
0&-k\sin ka& k\cos ka&k^\prime \mathrm{e}^{-k^\prime a}
\end{pmatrix}
\begin{pmatrix}
A\\B\\C\\D
\end{pmatrix}
=0\implies\boldsymbol{M}\boldsymbol{x}=0\]
由齐次线性方程组有非平庸解的条件 \((\det (\boldsymbol{M})=0)\) 得
\[
\left(\tan ka-\frac{k^{\prime}}{k} \right)
\left(\tan ka +\frac{k}{k^\prime} \right) =0\]
对应两组解 \(\displaystyle\tan ka=\frac{k^{\prime}}{k}\) 或 \(\displaystyle\tan ka =-\frac{k}{k^\prime}\) , 注意到 \(\displaystyle k=\sqrt{\frac{2mE}{\hbar^{2}}},k^{\prime}=\sqrt{\frac{2m(V_0-E)}{\hbar^{2}}}\), 有 \(\displaystyle k^{2}+k^{\prime2}=\frac{2mV_0}{\hbar^{2}}\)
当 \(\displaystyle \tan ka=\frac{k^{\prime}}{k}=\frac{k^{\prime}a}{ka}\) 时,
代入边界条件可得 \(C=0,\, A=D\), 令 \(\xi =ka,\eta=k^{\prime}a\), 则有
\[
\left\{
\begin{aligned}
\xi^{2}+\eta^{2}=&\frac{2mV_0a^2}{\hbar^{2}}\\
\xi\tan \xi=&\eta
\end{aligned}
\right.\]
当 \(\displaystyle \tan ka=-\frac{k}{k^{\prime}}=-\frac{ka}{k^{\prime}a}\) 时,
代入边界条件可得 \(B=0,\,A=-D,\) 令 \(\xi =ka,\,\eta=k^{\prime}a,\) 则有
\[
\left\{
\begin{aligned}
\xi^{2}+\eta^{2}=&\frac{2mV_0a^2}{\hbar^{2}}\\
\xi\cot \xi=&-\eta
\end{aligned}
\right.\]
定性分析: 当 \(V_0\) 很小时, 使 \(\displaystyle\frac{2mV_0a^{2}}{\hbar^{2}}<\left( \frac{\pi}{2} \right) ^{2}\) 时有一个解. 即无论势阱有多浅, 都至少存在一个束缚态解.
半无限深势阱
仍然采用之前的记号, 由 Schrödinger 方程加上边界条件可得
\[
\left\{ \begin{aligned}
\psi_{1}(x)=&0 &x\le 0 \\
\psi_{2}(x)=&A\sin kx &x<0<a\\
\psi_{3}(x)=&B \mathrm{e}^{-k^\prime x}&x\ge a
\end{aligned} \right.
,\qquad
\left\{
\begin{aligned}
k\cot ka=-k^\prime \\
k^2+k^{\prime2}=\frac{2mV_0}{\hbar^{2}}
\end{aligned}
\right.\]
一维不对称有限深势阱
设 \(\displaystyle E<V_{1,2},k=\frac{\sqrt{2mE}}{\hbar},k_1=\frac{\sqrt{2m(V_1-E)}}{\hbar},k_2=\frac{2m(V_2-E)}{\hbar}\), 由 Schrödinger 方程加上边界条件可得
\[
\left\{
\begin{aligned}
\tan (2ka)=&\frac{k(k_1+k_2)}{k^{2}-k_1k_2} \\
k^{2}+k_1^{2}=&\frac{2mV_1}{\hbar^{2}}\\
k^{2}+k_2^{2}=&\frac{2mV_2}{\hbar^{2}}
\end{aligned}
\right.\]
可数值求解得到能级.
高维势阱
二维无限深势阱
\[
V(x,y)=\left\{
\begin{aligned}
&0,\,\,(0\le x,y\le a)& \\
&\infty,\,\,\text{otherwise}&
\end{aligned}
\right.\]
设定态波函数为
\[
\left\{
\begin{aligned}
\psi&(x,y)\,\, &(0\le x,y\le a)\\
0&\,\,&\text{otherwise}
\end{aligned}
\right.\]
满足 Schrödinger 方程
\[
-\frac{\hbar^{2}}{2m}\left( \frac{\mathrm{d}2}{\mathrm{d}x^{2}}+
\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}\right) \psi(x,y)=E\psi(x,y)\]
分离变量 \(\psi(x,y)=\phi(x)\varphi(y)\), 代入得
\[
-\frac{\hbar^{2}}{2m}\left[ \frac{\phi^{\prime\prime}}{\phi(x)}
+\frac{\varphi^{\prime\prime}(y)}{\varphi(y)}\right] =E\]
设 \(\displaystyle -\frac{\hbar^{2}}{2m} \frac{\phi^{\prime\prime}}{\phi(x)}=E_x,-\frac{\hbar^{2}}{2m}\frac{\varphi^{\prime\prime}(y)}{\varphi(y)}=E_y,\) 则有 \(\phi(x)\sim \mathrm{e}^{\pm \mathrm{i}k_x x},\varphi(y)\sim \mathrm{e}^{\pm\mathrm{i} k_y y}\) 加上边界条件
\[
\left\{
\begin{aligned}
\phi(0)\varphi(y)=0,\,\, \phi(a)\varphi(y)=0\\
\phi(x)\varphi(0)=0,\,\, \phi(x)\varphi(a)=0
\end{aligned}
\right.\]
可以得到
\[
\psi(x,y)=\frac{2}{a}\sin \frac{n_x\pi x}{a}\sin \frac{n_y\pi y}{a}\quad
E=\frac{\pi^{2}\hbar^{2}}{2ma^{2}}(n_x^{2}+n_y^{2})\]
\[
\left\{
\begin{aligned}
k_x=n_x\pi,\,\,\, n_x=1, 2, 3\cdots \quad E_x=\frac{n_x^{2}\pi^{2}\hbar^{2}}{2ma^{2}}\\[1ex]
k_y=n_y\pi,\,\,\, n_y=1, 2, 3\cdots \quad E_y=\frac{n_y^{2}\pi^{2}\hbar^{2}}{2ma^{2}}
\end{aligned}
\right.\]
三维 Hard Box
同理可得
\[
\psi(x,y,z)=\left( \frac{2}{a} \right)
\sin \frac{n_x\pi x}{a} \sin \frac{n_y\pi y}{a} \sin \frac{n_y\pi y}{a}\quad
E=\frac{\pi^{2}\hbar^{2}}{2ma^{2}}(n_x^{2}+n_y^{2}+n_z^{2})\]
\(\delta\) 势阱
势函数 \(V(x)=-\lambda\delta (x),\) 其中 \([\lambda]=[M][L]^{3}\left[ T \right] ^{-2}.\)
在束缚态下, 求解定态 Schrödinger 方程, 则 \(E<0\)
在 \(x\neq 0\) 处
\[
\frac{\hbar^{2}}{2m}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^{2}}=E\psi(x)\implies
\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^{2}}+\frac{2mE}{\hbar^{2}}=0\]
即
\[
\psi^{\prime\prime}(x)-k^{2}\psi(x)=0\implies\psi(x)\sim \mathrm{e}^{\pm kx}\]
在 \(x=0\) 附近则有
\[
\psi^{\prime\prime}(x)-k^{2}\psi(x)+\alpha\delta (x)\psi(x)=0\]
其中 \(\displaystyle k^{2}=-\frac{2mE}{\hbar^{2}},\alpha=\frac{2m\lambda}{\hbar^{2}}.\) 对上式在 \((-\varepsilon,\varepsilon)\) 上做积分并令 \(\varepsilon\to 0\) 得
\[
\psi^{\prime}(0^{+})-\psi^{\prime}(0^{-})=\int_{-\varepsilon}^{\varepsilon}
\left[ k^{2}\psi(x)-\alpha\delta (x)\psi(x)\right] \mathrm{d}x
=-\alpha\psi(0)\]
在 \(x\neq 0\) 处设 \(\psi(x)=A \mathrm{e}^{\pm kx}\), 则
\[
\psi^{\prime}=
\left\{
\begin{aligned}
&Ak \mathrm{e}^{kx}&\quad(x<0) \\
&-Ak \mathrm{e}^{-kx}&\quad(x>0)
\end{aligned}
\right.\]
代入得 \(-Ak-Ak=-\alpha A\), 即
\[
k=\frac{\alpha}{2}=\frac{m\lambda}{\hbar^{2}}\quad
E=-\frac{\hbar^{2}k^{2}}{2m}=-\frac{\lambda^{2}m}{2\hbar^{2}}\]
只有一个束缚态解.
归一化
\[
\int_{-\infty}^{+\infty} \left| \psi(x) \right|^{2} \mathrm{d}=2
\int_{0}^{+\infty} \left| A \right|^{2} \mathrm{e}^{-2kx} \mathrm{d}x=
\frac{A^{2}}{k}=1\implies A=\sqrt{k}\]
一维谐振子
经典谐振子 \(V(x)=\frac{1}{2}kx^{2}=\frac{1}{2} m \omega^{2}x^{2}\), 量子化, 满足定态 Schrödinger 方程
\[
-\frac{\hbar^{2}}{2m}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^{2}}
+\frac{1}{2}m \omega^{2}x^{2}\psi(x)=E\psi(x)\]
边界条件 \(\psi(\pm\infty)\to 0\) , 将上述方程无量纲化, 选取参量 \(\xi、\lambda\) , 有 \(\displaystyle\xi=\sqrt{\frac{m \omega}{\hbar}}x=\alpha x,,\alpha=\sqrt{\frac{m \omega}{\hbar}},,\lambda=\frac{2E}{\hbar\omega},\) 得
\[
\frac{\mathrm{d}^{2}\psi(\xi)}{\mathrm{d}\xi^{2}}+
(\lambda-\xi^{2})\psi(\xi)=0\]
考虑函数在 \((x=\pm \infty)\) 处的渐进行为, 当 \(\xi\to \pm\infty\) 时 \(\xi^{2}\gg \lambda\), 方程有近似解 \(\psi(\xi)\sim \mathrm{e}^{\pm \frac{\xi^{2}}{2}}\), 加上边界条件, 可取 \(\psi(\xi)\sim \mathrm{e}^{-\frac{\xi^{2}}{2}},\) 不妨设 \(\psi(\xi)=H(\xi) \mathrm{e}^{-\frac{\xi^{2}}{2}}\) 代入上式得
\[
H^{\prime\prime}(\xi)-2\xi H^{\prime}(\xi)+(\lambda-1)H(\xi)=0\]
上式称为 Hermite 方程, 设 \(H(\xi)=\sum_{\nu=0}^{\infty}a_\nu\xi^{\nu}\) 代入上式可得
\[
2a_2 + 6a_3\xi +\cdots + (\nu+ 2)(\nu+ 1)a_{\nu+2}\xi^\nu+ \cdots
= (1−\lambda)a_0 +\cdots + (2\nu−\lambda+ 1)a_\nu\xi^\nu+\cdots\]
比较系数可以得到递推关系
\[
\frac{a_{\nu+2}}{a_{\nu}}=\frac{2\nu-\lambda+1}{(\nu+2)(\nu+1)}
\overset{\nu\gg 1}{\longrightarrow}\frac{2}{\nu}\]
由上式可知其级数和的发散行为与 \(\mathrm{e}^{\xi^{2}}\) 类似, 加上边界条件可知 Hermite 多项式必须有截断, 即
\[
\lambda=2n+1\,\,(n=0,1,2\cdots )\implies
\left\{
\begin{aligned}
E_n=\frac{\lambda}{2}\hbar\omega=(n+\frac{1}{2})\hbar\omega \\
\psi_n (x)=N_n \mathrm{e}^{-\frac{1}{2}\alpha ^{2}x^{2}}H_n (\alpha x)
\end{aligned}
\right.\]
其中 \(N_{n}=\sqrt{\frac{\alpha}{\sqrt{\pi}2^{n}n!}}\) 为归一化系数, \(H_n(\alpha x)\) 为截断 (奇数次幂或偶数次幂) 的多项式.
Hermite 多项式具有如下的性质
- Rodrignes 公式:
\[
H_n (\xi)=(-1)^n e^{\xi^2} \frac{\mathrm{d}^n}{\mathrm{d} \xi^n} e^{-\xi^2}\]
\[
e^{-s^2+2 \xi s}=\sum_{n=0}^{\infty} \frac{H_n(\xi)}{n !} s^n\]
\[
\int_{-\infty}^{+\infty} H_m(\xi) H_n(\xi)
\mathrm{e}^{-\xi^2} \mathrm{d}\xi=\sqrt{\pi} 2^n n ! \delta_{m n}\]
\[
\begin{aligned}
&H_{n+1}(\xi)-2 \xi H_n(\xi)+2 n H_{n-1}(\xi)=0 \\
&H_n^{\prime}(\xi)=2 n H_{n-1}(\xi)
\end{aligned}\]
最初的几个 Hermite 多项式为
\[
\begin{aligned}
&H_0(\xi)=1 \\
&H_1(\xi)=2 \xi \\
&H_2(\xi)=4 \xi^2-2 \\
&H_3(\xi)=8 \xi^3-12 \xi
\end{aligned}\]
能量最低的几个波函数具体表达式为,
\[
\begin{aligned}
&\psi_0(x)=\frac{\sqrt{\alpha}}{\pi^{1 / 4}} e^{-\frac{1}{2} \alpha^2 x^2}\\
&\psi_1(x)=\frac{\sqrt{2 \alpha}}{\pi^{1 / 4}} \alpha x e^{-\frac{1}{2} \alpha^2 x^2}\\
&\psi_2(x)=\frac{1}{\pi^{1 / 4}} \sqrt{\frac{\alpha}{2}}\left(2 \alpha^2 x^2-1\right) e^{-\frac{1}{2} \alpha^2 x^2}\\
&\psi_3(x)=\frac{\sqrt{3 \alpha}}{\pi^{1 / 4}} \alpha x\left(\frac{2}{3} \alpha^2 x^2-1\right) e^{-\frac{1}{2} \alpha^2 x^2}
\end{aligned}
\]
波函数具有递推公式
\[
\begin{aligned}
\xi \psi_n(\xi) &=\sqrt{\frac{n}{2}} \psi_{n-1}(\xi)+\sqrt{\frac{n+1}{2}} \psi_{n+1}(\xi)\\
\frac{\mathrm{d}}{\mathrm{d}\xi} \psi_n(\xi) &=\sqrt{\frac{n}{2}} \psi_{n-1}(\xi)-\sqrt{\frac{n+1}{2}} \psi_{n+1}(\xi)
\end{aligned}
\]
并且有
\[
\psi_n(-x)=(-1)^n \psi(x)
\]
即 \(n\) 的奇偶性决定了波函数的宇称。
几个最低能级波函数与概率分布的图像
一维谐振子波函数
一维谐振子概率密度
代数解法
Hamilton 算符
\[
\hat{H}=\frac{\hat{p}^{2}}{2m}+\frac{1}{2}m\omega^{2}x^{2}
\]
定义产生湮灭算符
\[
\hat{a}^\dagger=\sqrt{\frac{m \omega}{2\hbar}}\hat{x}-
\frac{\mathrm{i} \hat{p}}{\sqrt{2m\hbar \omega}}\quad\quad
\hat{a}=\sqrt{\frac{m \omega}{2\hbar}}\hat{x}+
\frac{\mathrm{i} \hat{p}}{\sqrt{2m\hbar \omega}}\quad\quad
\]
由对易关系 \([\hat{x},\hat{p}]=\mathrm{i}\hbar\), 可以得到产生湮灭算符的对易关系
\[
[\hat{a},\hat{a}^\dagger]=1
\]
即 \(\hat{a}\hat{a}^\dagger-\hat{a}^\dagger\hat{a}=1\).
也可以用 \(\hat{a}、\hat{a}^\dagger\) 表示 \(\hat{x}\) 和 \(\hat{p}\)
\[
\hat{x}=\sqrt{\frac{\hbar}{2m \omega}}(\hat{a}+\hat{a}^\dagger),\qquad
\hat{p}=\mathrm{i}\sqrt{\frac{m \omega\hbar}{2}}(\hat{a}^\dagger-\hat{a})
\]
代入 Hamilton 算符可以得到
\[
\begin{aligned}
\hat{H} &=\frac{1}{2 m}\left (-\frac{m \hbar \omega}{2}\right)\left (\hat{a}^{\dagger}-\hat{a}\right)^{2}+\frac{m \omega^{2}}{2}\left (\frac{\hbar}{2 m \omega}\right)\left (\hat{a}+\hat{a}^{\dagger}\right)^{2} \\
&=\frac{\hbar \omega}{2}\left (\hat{a}^{\dagger} \hat{a}+\hat{a} \hat{a}^{\dagger}\right) \\
&=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)=\hbar \omega\left(\hat{a} \hat{a}^{\dagger}-\frac{1}{2}\right)
\end{aligned}
\]
设 \(\hat{H}\) 的一个本征函数为 \(\psi_n(x)\), 即 \(\hat{H}\psi_n(x)=E_n\psi_n(x)\),
使 \(\hat{H}\) 分别作用在 \(\hat{a}\psi_n(x),\,\,\hat{a}^\dagger\psi_n(x)\) 上利用产生湮灭算符表达的 Hamilton 算符可以得到
\[
\hat{H}\hat{a}\psi_n(x)=(E_n-\hbar\omega)\hat{a}\psi_n(x),\quad
\hat{H}\hat{a}\psi_n(x)=(E_n+\hbar\omega)\hat{a}^\dagger\psi_n(x)
\]
即 \(\hat{a}\psi_n(x)\) 和 \(\hat{a}^\dagger\psi_n(x)\) 分别是 \(\hat{H}\) 本征值为 \(E_n-\hbar\omega\) 和 \(E_n+\hbar\omega\) 的本征函数, 也就是说将 \(\hat{a}^\dagger(\hat{a})\) 作用在波函数上将使得波函数的能量增加 (减少) \(\hbar\omega\).
若将 \(\hat{a}\) 持续作用于 \(\psi_n\) 将会得到负能量, 这并不符合物理规律, 故存在基态波函数
\(\psi_0(x)\) 使得 \(\hat{a}\psi_0(x)=0\).
将 \(\hat{H}\) 作用在 \(\psi_0(x)\) 上可以得到
\[
\hat{H}\psi_0(x)=\hbar\omega(\hat{a}^\dagger\hat{a}+\frac{1}{2})\psi_0(x)
=\frac{1}{2}\hbar\omega \psi_0(x)
\]
即基态能量为 \(\frac{1}{2}\hbar\omega\).
将 \(\hat{a}^\dagger\) 对 \(\psi_0(x)\) 作用 \(n\) 次可以得到能级为 \(n\) 的本征函数, \(E_n=(n+\frac{1}{2})\hbar\omega\).
第 \(n\) 能级的波函数可通过将 \(\hat{a}^{\dagger}\) 作用在基态 n 次后得到
\[
\psi_{0} \longrightarrow
\stackrel{\left(\hat{a}^{\dagger}\right)^{n}}{\longrightarrow} \psi_{n}(x)
=C\left(\hat{a}^{\dagger}\right)^{n} \psi_{0} \equiv C \psi_{n}(x)
\]
其中 C 为归一化系数.
\(\hat{a}^\dagger\) 作用在 \(\psi_{n}(x)\) 上可以得到 \(\psi_{n+1}(x)\) ,
\[
\psi_{n+1}(x)=D \hat{a}^{\dagger} \psi_{n}(x)
\]
但还有一个常数 \(D\) 待定, 可通过产生湮灭算符的具体微分形式得到 \(D\) .
坐标空间中产生湮灭算符为
\[
\hat{a}=\frac{1}{\sqrt{2}}\left(\frac{\mathrm{d}}{\mathrm{d} \xi}+\xi\right)
\quad, \quad \hat{a}^{\dagger}=\frac{1}{\sqrt{2}}\left(\xi-
\frac{\mathrm{d}}{\mathrm{d} \xi}\right)
\]
其中 \(\xi=\sqrt{\frac{m \omega}{\hbar}} x=\alpha x\).
将波函数 \(\psi_{n+1}(x)\) 做内积
\[
\begin{aligned}
& \int \psi_{n+1}^{}(x) \psi_{n+1}(x) \mathrm{d}x \\
=&|D|^{2} \int\left(\hat{a}^{\dagger} \psi_{n}(x)\right)^{}\left(\hat{a}^{\dagger}
\psi_{n}(x)\right) \mathrm{d}x =|D|^{2} \frac{1}{\sqrt{2}} \int\left(-\frac{d}{d \xi}+\xi\right)
\psi_{n}^{}(x)\left(\hat{a}^{\dagger} \psi_{n}(x)\right) \mathrm{d}x \\
=&-\left.|D|^{2} \frac{1}{\sqrt{2} \alpha} \psi_{n}^{}(x)\left(\hat{a}^{\dagger}
\psi_{n}(x)\right)\right|_{-\infty} ^{+\infty}+|D|^{2} \int \psi{n}^{}(x)
\frac{1}{\sqrt{2}}\left(\frac{d}{d \xi}+\xi\right)\left(\hat{a}^{\dagger} \psi_{n}(x)\right) \mathrm{d}x \\
=&|D|^{2} \int \psi_{n}^{}(x) \hat{a} \hat{a}^{\dagger} \psi_{n}(x) \mathrm{d}x=|D|^{2}
\int \psi_{n}^{}(x)\left(\hat{a}^{\dagger} \hat{a}+1\right) \psi_{n}(x) \mathrm{d}x \\
=&|D|^{2}(n+1) \int \psi_{n}^{}(x) \psi_{n}(x) \mathrm{d} x
\end{aligned}
\]
\(\psi_{n}\) 和 \(\psi_{n+1}\) 都是归一化的, 且 \(D\) 为实数得
\[
D=\frac{1}{\sqrt{n+1}}
\]
以及递推关系
\[
\hat{a}^{\dagger} \psi_{n}(x)=\sqrt{n+1} \psi_{n+1}(x)
\]
应用上述的递推关系可以得到 \(\psi_{n}(x)\) 中的常数 \(C\) ,
\[
\psi_{n}(x)=\frac{1}{\sqrt{n !}}\left(\hat{a}^{\dagger}\right)^{n}
\psi_{0}(x)=\frac{1}{\sqrt{n !} \sqrt{2^{n}}}
\left(\xi-\frac{\mathrm{d}}{\mathrm{d} \xi}\right)^{n} \psi_{0}(x)
\]
同理可得
\[
\hat{a} \psi_{n}(x)=\sqrt{n} \psi_{n-1}(x)
\]
所以
\[
\begin{aligned}
\hat{H} & \psi_{n}(x)=
\hbar \omega\left (\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)
\psi_{n}(x)=\hbar \omega\left(n+\frac{1}{2}\right) \psi_{n}(x) \\
&\Longrightarrow \hat{N} \psi_{n}(x) \equiv \hat{a}^{\dagger}
\hat{a} \psi_{n}(x)=n \psi_{n}(x)
\end{aligned}
\]
即 \(\psi_{n}(x)\) 是 \(\hat{N}\equiv\hat{a}^{\dagger}\hat{a}\) (粒子束算符) 的本征值为 \(n\) 的本征函数.
可以通过基态条件 \(\hat{a} \psi_{0}(x)=0\) 求解出基态波函数, 由
\[
\hat{a} \psi_{0}(\xi)=\frac{1}{\sqrt{2}}
\left (\frac{\mathrm{d}}{\mathrm{d} \xi}+\xi\right)
\psi_{0}(\xi)=0
\]
可得
\[
\psi_{0}(\xi)=A \mathrm{e}^{-\xi^{2} / 2}
\]
归一化后得
\[
A=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}
\]
和
\[
\psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}
\mathrm{e}^{-\xi^{2} / 2}=\sqrt{\frac{\alpha}{\sqrt{\pi}}}
\mathrm{e}^{-\alpha^{2} x^{2}}
\]
激发态的波函数, 可以通过将产生算符作用于 \(\psi_0(x)\) 得到,
\[
\psi_{n}(x)=\frac{1}{\sqrt{n !}}\left(\hat{a}^{\dagger}\right)^{n}
\psi_{0}(x)=\frac{1}{\sqrt{n !}
\sqrt{2^{n}}}\left(\xi-\frac{\mathrm{d}}{\mathrm{d} \xi}\right)^{n}
\psi_{0}(x)
\]
将产生湮灭算符代入 \(\hat{x}\) 和 \(\hat{p}\) 中得到
\[
\begin{aligned}
\hat{x} \psi_{n} &=\sqrt{\frac{\hbar}{2 m \omega}}\left(\sqrt{n}
\psi_{n-1}+\sqrt{n+1} \psi_{n+1}\right)\\
\hat{p} \psi_{n} &=-\mathrm{i} \sqrt{\frac{m \hbar \omega}{2}}
\left(\sqrt{n} \psi_{n-1}-\sqrt{n+1} \psi_{n+1}\right)
\end{aligned}
\]
因为 \(\hat{x}\) 和 \(\hat{p}\) 要改变宇称, 所以它们在 \(\psi_{n}(x)\) 态的平均值为零, 这也可以从上面的递推关系得出 (\(\psi_{n}(x)\) 和 \(\psi_{n \pm 1}(x)\) 是相互正交的).
由 \(\hat{a}^\dagger,\hat{a}\) 表示的 \(\hat{x}\) 和 \(\hat{p}\) 可得
\[
\begin{aligned}
\left<x^{2} \right>{n}&=\int{-\infty}^{+\infty} \psi_n^\ast(x)\hat{x}^{2}
\psi_{n}(x) \mathrm{d}x=\frac{\hbar}{2m \omega}\int_{-\infty}^{+\infty}
\psi_{n}^\ast(x)[\hat{a}^{2}+\hat{a}\hat{a}^\dagger+
\hat{a}^\dagger\hat{a}+\hat{a}^{\dagger 2}]\psi_{n}(x) \mathrm{d}x
\\
&=\frac{\hbar}{2m \omega}\int_{-\infty}^{+\infty}
\psi_{n}^\ast(x)[2\hat{a}^\dagger\hat{a}+1]\psi_{n}(x) \mathrm{d}x
=\frac{\hbar}{2m \omega}\int_{-\infty}^{+\infty}
\psi_{n}^\ast(x)[2\hat{N}+1]\psi_{n}(x) \mathrm{d}x\\
&=\frac{\hbar}{2m \omega}(2n+1)
\end{aligned}
\]
以上推导利用到了波函数的正交性、递推关系以及产生湮灭算符的对易关系.
同理可得
\[
\begin{aligned}
\left<p^{2} \right>{n}&=\int_{-\infty}^{+\infty} \psi_n^\ast (x)\hat{p}^{2}
\psi_{n}(x) \mathrm{d}x=\frac{\hbar}{2m \omega}\int_{-\infty}^{+\infty}
\psi_{n}^\ast (x)[\hat{a}^{2}-\hat{a}\hat{a}^\dagger-
\hat{a}^\dagger\hat{a}+\hat{a}^{\dagger 2}]\psi_{n}(x) \mathrm{d}x
\\
&=\frac{m \omega\hbar}{2}(2n+1)
\end{aligned}
\]
故
\[
\begin{aligned}
\left<V \right>{n}&=\left<\frac{1}{2}m \omega^{2}x^{2} \right>{n}=
\frac{1}{2}m \omega^{2}\left<x^{2} \right>{n}=\frac{1}{2}m
\omega^{2}\cdot
\frac{\hbar}{2m \omega }(2n+1)=\frac{1}{2}E{n}
\\
\left<T \right>_{n}&=\left<\frac{p^{2}}{2m} \right>_n=\frac{1}{2m}
\left<p^{2} \right>_n=\frac{1}{2m}\cdot
\frac{m \omega\hbar}{2}(2n+1)=\frac{1}{2}E_n
\end{aligned}
\]
散射态
束缚态是指在无穷处势能无限大或者粒子能量在无穷远处小于势能, 粒子被势场束缚, 无穷远处波函数为 0, 从而能级分立. 而对于无穷远处势能为 0 的场或者粒子能量在无穷远处大于势能粒子可以出现在无穷远处, 无穷远处波函数不为 0, 能量可以任意取值, 可以为连续谱, 粒子态称为散射态(scattering state). 在这类问题中, 如果某处有势场粒子在传播过程中会受到势场影响, 发生相互作用, 粒子被散射. 也就是说在这类情况下, 讨论给定能量的粒子被势场散射的问题.
一维有限深方势阱
对于散射态 \(E>V_0\)
考虑 \(x<0, x>a\) , 波函数 \(\psi_{1,3}(x)\) 满足定态 Schrödinger 方程,
\[
\frac{\mathrm{d}^{2}}{\mathrm{d} x^{2}} \psi+\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}} \psi=0
\]
解为 \(\psi \sim \mathrm{e}^{\pm\mathrm{ i} k_{1} x}\) , 其中 \(k_{1}=\sqrt{2 m\left(E-V_{0}\right) / \hbar^{2}}\)
而在 \(0<x<a\) 区域, \(\psi_2(x)\) 满足
\[
\frac{\mathrm{d}^{2}}{\mathrm{d} x^{2}}
\psi+\frac{2 m E}{\hbar^{2}} \psi=\frac{\mathrm{d}^{2}}{d x^{2}}
\psi+k_{2}^{2} \psi=0
\]
解为 \(\psi \sim \mathrm{e}^{\pm \mathrm{ i} k_{2} x}\)
一维有限深方势阱
即
\[
\begin{aligned}
\psi_{1}(x)=A \mathrm{e}^{\mathrm{i} k_{1} x}+A^{\prime} \mathrm{e}^{-\mathrm{i} k_{1} x}\,\,
& (x \leq 0) \\
\psi_{2}(x)=B \mathrm{e}^{\mathrm{i} k_{2} x}+B^{\prime} \mathrm{e}^{-\mathrm{i} k_{2} x}\,\,
& (0<x<a) \\
\psi_{3}(x)=C \mathrm{e}^{\mathrm{i} k_{1} x}+C^{\prime} \mathrm{e}^{-\mathrm{i} k_{1} x}\,\,
& (x \geq a)
\end{aligned}
\]
加上在 \(x=0\) 和 \(x=a\) 处的边界条件有
\[
\begin{aligned}
\psi_{1}(0)=\psi_{2}(0) & : A+A^{\prime}=B+B^{\prime} \\
\psi_{1}^{\prime}(0)=\psi_{2}^{\prime}(0) & : k_{1}\left(A-A^{\prime}\right)
=k_{2}\left(B-B^{\prime}\right) \\
\psi_{2}(a)=\psi_{3}(a) & : B \mathrm{e}^{\mathrm{i} k_{2} a}+B^{\prime}
\mathrm{e}^{-i k_{2} a}=C \mathrm{e}^{\mathrm{i} k_{1} a}
+C^{\prime} \mathrm{e}^{-\mathrm{i} k_{1} a} \\
\psi_{2}^{\prime}(a)=\psi_{3}^{\prime}(a) & :
k_{2} B \mathrm{e}^{\mathrm{i} k_{2} a}-k_{2} B^{\prime} \mathrm{e}^{-\mathrm{i} k_{2} a}=k_{1} C
\mathrm{e}^{\mathrm{i} k_{1} a}-k_{1} C^{\prime} \mathrm{e}^{-\mathrm{i} k_{1} a}
\end{aligned}
\]
有 6 个未知参数 \(\left(A, A^{\prime}, B, B^{\prime}, C, C^{\prime}\right)\) , 但仅有 4 个边界条件. 对于波数 \(k>0 , \mathrm{e}^{\mathrm{i} k x}\) 为由左向右传播的行波, \(\mathrm{e}^{-\mathrm{i} k x}\) 是由右向左传播的行波. (波函数有时间相因子 \(\mathrm{e}^{-\mathrm{i} E t / \hbar}=\mathrm{e}^{-\mathrm{i} \omega t}\)) . \(A, C\) 表示向右传播的概率波的振幅, 而 \(A^{\prime}, C^{\prime}\) 表示向左传播的概率波的振幅. 考虑实际散射情况从左向右发送一束粒子, 这种情况下, 在右边区域向左传播的概率波为零, 即取 \(C^{\prime}=0\) . 波函数无法归一化, 但可以得到四个比值 \(\left(A^{\prime} / A, B / A, B^{\prime} / A, C / A\right)\) . 也可以得到透射系数和反射系数. 对于波函数 \(\psi(x)\) , 概率流为
\[
j_{x}=-\frac{\mathrm{i} \hbar}{2 m}\left(\psi^{*}(x)
\frac{\mathrm{d} \psi(x)}{\mathrm{d} x}-\frac{\mathrm{d} \psi^{*}(x)}{\mathrm{d} x}
\psi(x)\right)
\]
这样, 对于入射波 \(\psi_{i n}=A \mathrm{e}^{\mathrm{i} k_{1} x}\) 的入射概率流密度 \(J_{i n}\) 为
\[
J_{i n}=\frac{\mathrm{i} \hbar}{2 m}\left(\psi_{i n}
\frac{\mathrm{d} \psi_{i n}^{*}}{\mathrm{d} x}-
\frac{\mathrm{d} \psi_{i n}}{\mathrm{d} x}
\psi_{i n}^{\ast}\right)=\frac{\hbar k_{1}}{m}|A|^{2}
\]
透射波 \(\psi_{T}=C \mathrm{e}^{\mathrm{i} k_{1} x}\) 的透射概率流密度为
\[
J_{T}=\frac{\hbar k_{1}}{m}|C|^{2}
\]
反射波 \(\psi_{R}=A^{\prime} \mathrm{e}^{-\mathrm{i} k_{1} x}\) 的反射概率流密度为
\[
J_{R}=\frac{\hbar k_{1}}{m}\left|A^{\prime}\right|^{2}
\]
可得透射系数 (transmission coefficient) 和反射系数 (reflection coefficient),
\[
\begin{aligned}
\text{透射系数} : T=\frac{J_{T}}{J_{i n}}=\left|\frac{C}{A}\right|^{2}
\\
\text{反射系数}: R=\frac{J_{R}}{J_{i n}}=\left|\frac{A^{\prime}}{A}\right|^{2}
\end{aligned}
\]
求解边界条件可得,
\[
\begin{aligned}
\frac{C}{A}=\frac{4 k_{1} k_{2} \mathrm{e}^{-\mathrm{i} k_{1} a}}{\left (k_{1}+k_{2}\right)^{2}
\mathrm{e}^{-\mathrm{i} k_{2} a}-\left (k_{1}-k_{2}\right)^{2} \mathrm{e}^{\mathrm{i} k_{2} a}} \\
\frac{A^{\prime}}{A}=\frac{-2 \mathrm{i}\left(k_{1}^{2}-k_{2}^{2}\right) \sin k_{2} a}{\left(k_{1}+k_{2}\right)^{2}
\mathrm{e}^{-\mathrm{i} k_{2} a}-\left(k_{1}-k_{2}\right)^{2} \mathrm{e}^{i k_{2} a}}
\end{aligned}
\]
这样可以得到透射系数和反射系数
\[
\begin{aligned}
T &=\frac{|C|^{2}}{|A|^{2}}=\frac{4 k_{1}^{2} k_{2}^{2}}{\left(k_{1}^{2}-k_{2}^{2}\right)^{2} \sin ^{2} k_{2} a+4 k_{1}^{2} k_{2}^{2}}\\
R &=\frac{\left|A^{\prime}\right|^{2}}{|A|^{2}}=
\frac{\left(k_{1}^{2}-k_{2}^{2}\right)^{2} \sin ^{2} k_{2} a}
{\left(k_{1}^{2}-k_{2}^{2}\right)^{2} \sin ^{2} k_{2} a+
4 k_{1}^{2} k_{2}^{2}}
\end{aligned}
\]
可以看出, 不是所有的粒子都能通过势阱, 即反射系数 \(R \neq 0\) . 但满足概率守恒, 即透射系数和反射系数和为 1 , 有
\[
T+R=1
\]
一维方势垒
\[
V(x)=\left\{\begin{aligned}
V_{0}\,\, & 0<x<a \\
0\,\, & \text { otherwise }
\end{aligned}\right.
\]
一维方势垒
其中 \(V_{0}>0\) . 考虑一维情况下, 单粒子从左方向右传播, 在 \(x=\{0, a\}\) 处遇到势垒, 发生相互作用后进行散射.
- \(E>V_{0}>0\)
在 \(x<0, x>a\) 处, 波函数 \(\psi_{1, 3}(x)\) 满足定态 Schrödinger 方程,
\[
\frac{\mathrm{d}^{2}}{\mathrm{d} x^{2}} \psi+\frac{2 m E}{\hbar^{2}} \psi=0
\]
解为 \(\psi \sim \mathrm{e}^{\pm \mathrm{i} k_{1} x}\) , 其中 \(k_{1}=\sqrt{2 m E / \hbar^{2}}\) .
在 \(0<x<a\) 处, \(\psi_{2}(x)\) 满足定态 Schrödinger 方程
\[
\frac{\mathrm{d}^{2}}{\mathrm{d} x^{2}} \psi+\frac{2 m\left (E-V_{0}\right)}{\hbar^{2}}
\psi=\frac{\mathrm{d}^{2}}{\mathrm{d} x^{2}} \psi+k_{2}^{2} \psi=0
\]
解为 \(\psi \sim \mathrm{e}^{\pm \mathrm{i} k_{2} x}\) .
即
\[
\begin{aligned}
\psi_{1}(x)=A \mathrm{e}^{\mathrm{i} k_{1} x}+A^{\prime} \mathrm{e}^{-\mathrm{i} k_{1} x}& (x \leq 0) \\
\psi_{2}(x)=B \mathrm{e}^{\mathrm{i} k_{2} x}+B^{\prime} \mathrm{e}^{-\mathrm{i} k_{2} x} & (0<x<a) \\
\psi_{3}(x)=C \mathrm{e}^{\mathrm{i} k_{1} x}\quad(x \geq a)&
\end{aligned}
\]
其中
\[
k_{1}=\frac{\sqrt{2 m E}}{\hbar} \quad, \quad k_{2}=
\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar^{2}}
\]
加上在 \(x=0\) 和 \(x=a\) 处的边界条件可得
\[
\begin{aligned}
\frac{C}{A}=\frac{4 k_{1} k_{2} \mathrm{e}^{-\mathrm{i} k_{1} a}}
{\left(k_{1}+k_{2}\right)^{2}
\mathrm{e}^{-\mathrm{i} k_{2} a}-\left(k_{1}-k_{2}\right)^{2}
\mathrm{e}^{\mathrm{i} k_{2} a}} \\
\frac{A^{\prime}}{A}=\frac{-2 \mathrm{i}
\left(k_{1}^{2}-k_{2}^{2}\right) \sin k_{2} a}
{\left(k_{1}+k_{2}\right)^{2} \mathrm{e}^{-\mathrm{i} k_{2} a}-
\left(k_{1}-k_{2}\right)^{2}
\mathrm{e}^{\mathrm{i} k_{2} a}}
\end{aligned}
\]
可得透射系数和反射系数为
\[
\begin{aligned}
T=\frac{|C|^{2}}{|A|^{2}}=\frac{4 k_{1}^{2} k_{2}^{2}}
{\left(k_{1}^{2}-k_{2}^{2}\right)^{2} \sin ^{2} k_{2} a+4 k_{1}^{2}
k_{2}^{2}}
\\
R=\frac{\left|A^{\prime}\right|^{2}}{|A|^{2}}=\frac{\left(k_{1}^{2}-k_{2}^{2}\right)^{2}
\sin ^{2} k_{2} a}
{\left(k_{1}^{2}-k_{2}^{2}\right)^{2} \sin ^{2} k_{2} a+4 k_{1}^{2} k_{2}^{2}}
\end{aligned}
\]
在高能散射情况下, 即高能极限 \(\left(k_{2} \simeq k_{1}\right)\) , 透射系数 \(T \approx 1\) 此时将发生“全透散射”, 因为势垒相对于入射粒子的能量而言可以忽略.
从上式可以看出另一个发生“全透散射”的条件
\[
\sin \left(k_{2} a\right)=0 \quad \Longrightarrow \quad k_{2} a=n \pi \quad
\Longrightarrow \quad \frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar} a=n \pi
\]
此时入射波能量为
\[
E-V_{0}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}=n^{2} E_{1}^{\infty}
\]
其中 \(E_{1}^{\infty}\) 是宽度为 \(a\) 的无穷深势阱的基态能量. 这种情况又被称作为“共振散射”.
- \(V_{0}>E>0\)
当入射粒子能量小于势垒高度时, \(k_{2}\) 是虚数, 区域 2 的波函数呈现指数形式, 令 \(k_{2}=\mathrm{i} k_{3}\) , 其中 \(k_{3}=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}\) 为实数. 所以波函数为
\[
\begin{aligned}
\psi_{1}(x)&=A \mathrm{e}^{\mathrm{i} k_{1} x}+A^{\prime} \mathrm{e}^{-\mathrm{i} k_{1} x}\quad(x \leq 0) \\
\psi_{2}(x)&=B \mathrm{e}^{-k_{3} x}+B^{\prime} \mathrm{e}^{k_{3} x} \quad(0<x<a) \\
\psi_{3}(x)&=C \mathrm{e}^{\mathrm{i} k_{1} x}\quad(x \geq a)
\end{aligned}
\]
此时结果可以从 \(E>V(x)\) 散射结果通过如下替换得到:
\[
k_{2} \rightarrow i k_{3} \quad \Longrightarrow \quad k_{2}^{2} \rightarrow-k_{3}^{2}
\]
重复上述计算可得
\[
\begin{aligned}
T &=\frac{|C|^{2}}{|A|^{2}}=\frac{4 k_{1}^{2} k_{3}^{2}}{\left(k_{1}^{2}+
k_{3}^{2}\right)^{2} \sinh ^{2} k_{3} a+4 k_{1}^{2} k_{3}^{2}}, \\
R &=\frac{\left|A^{\prime}\right|^{2}}{|A|^{2}}=\frac{\left(k_{1}^{2}+
k_{3}^{2}\right)^{2} \sinh ^{2} k_{3} a}{\left(k_{1}^{2}+k_{3}^{2}\right)^{2} \sinh ^{2} k_{3} a+4 k_{1}^{2} k_{3}^{2}} .
\end{aligned}
\]
一般地, 透射系数 \(T \neq 0\) , 粒子有一定的概率“穿过”势垒, 透射过去. 这种现象称为隧道效应 (tunneling).
在低能入射下, \(E\) 较小, 当 \(k_{3} a \gg 1\) 时, 由 \(\sinh k_{3} a \sim \frac{1}{2} \mathrm{e}^{k_{3} a}\) 得到
\[
T=\frac{16 k_{1}^{2} k_{3}^{2}}{\left(k_{1}^{2}+k_{3}^{2}\right)^{2}}
\mathrm{e}^{-2 k_{3} a}=T_{0} \mathrm{e}^{-\frac{2 a}{\hbar}
\sqrt{2 m\left(V_{0}-E\right)}}=\frac{16 E\left(V_{0}-E\right)}{V_{0}^{2}}
\mathrm{e}^{-\frac{2}{\hbar} \int_{0}^{a} \sqrt{2 m\left(V_{0}-E\right)} \mathrm{d} x}
\]
其中积分适用于一般形状的势垒, 而
\[
T_{0}=\frac{16 k_{1}^{2} k_{3}^{2}}{\left(k_{1}^{2}+
k_{3}^{2}\right)^{2}}=\frac{16 E\left(V_{0}-E\right)}{V_{0}^{2}}
\]
可以看出, 透射系数 \(T\) 依赖于势垒高度, 势垒宽度, 以及粒子质量. 随着势垒高度, 宽度和粒子质量的增大而指数下降,所以宏观条件下一般观测不到隧道效应.
一维 \(\delta\) 势垒
\[
V=V_{0} \delta(x) \quad\left(V_{0}>0\right)
\]
Schrödinger 方程为
\[
\frac{\hbar^{2}}{2 m} \frac{\mathrm{d}^{2} \psi}
{\mathrm{d} x^{2}}=\left[E-V_{0} \delta(x)\right] \psi
\]
两边作积分 \(\lim_{\epsilon \rightarrow 0^{+}} \int_{-\epsilon}^{+\epsilon} \mathrm{d} x\) , 得到
\[
\frac{\hbar^{2}}{2 m}\left[\psi^{\prime}\left(0^{+}\right)-\psi^{\prime}
\left(0^{-}\right)\right]=V_{0} \psi(0) .
\]
这表明, 对于 \(\delta\) 势垒, \(\psi^{\prime}\) 在 \(x=0\) 处不连续 (除非 \(\psi(0)=0\)) . 令
\[
\psi(x)=\left\{\begin{aligned}
&\mathrm{e}^{\mathrm{i} k x}+A^{\prime} \mathrm{e}^{-\mathrm{i} k x} & (x<0)\\
&C\mathrm{e}^{\mathrm{i} k x} & (x>0)
\end{aligned}\right.
\]
代入前式有
\[
\frac{\mathrm{i} k \hbar^{2}}{2 m}\left(C-1+A^{\prime}\right)=V_{0}
C \text { or } V_{0}\left(1+A^{\prime}\right)
\]
另外由 \(\psi(0)\) 连续有
\[
1+A^{\prime}=C
\]
可得
\[
C=\frac{1}{\left(1+\frac{\mathrm{i} m V_{0}}{\hbar^{2} k}\right)} .
\]
透射系数为
\[
T=|C|^{2}=\frac{1}{1+\frac{m^{2} V_{0}^{2}}{\hbar^{4} k^{2}}}
=\frac{1}{1+\frac{m V_{0}^{2}}{2 E \hbar^{2}}},
\]
式中使用了 \(E=\frac{\hbar^{2} k^{2}}{2 m}\) .
反射系数则为
\[
R=1-T=\frac{\frac{m V_{0}^{2}}{2 E \hbar^{2}}}{1+\frac{m V_{0}^{2}}{2 E \hbar^{2}}} .
\]