第三章 形式理论
线性代数
矢量空间
无限维复矢量空间: Hilbert 空间
矢量空间满足的性质
\[\forall \left|\alpha\right> \in V,,,\left|\alpha\right> +\left|0\right> =\left|\alpha\right>\]
- 存在唯一逆元 \(\left|-\alpha\right>\)
\[\left|\alpha\right> +\left|-\alpha\right> =\left|0\right>\]
-
标量乘法
-
标量乘法封闭性
- \(a\left|\alpha\right> =\left|\gamma\right> \in V\)
-
乘法结合律
- \(a\left|\alpha\right> +b\left|\alpha\right> =(a+b)\left|\alpha\right> \quad a\left|\alpha\right> +a\left|\beta\right> =a(\left|\alpha\right> +\left|\beta\right> )\)
矢量空间的基
若存在一组向量 \(\left\{\left|\alpha_i\right> \right\}\), 使得 \(\forall\left|\alpha\right> \in V\) 存在唯一的一组数 \(\left\{ a_i \right\}\) 有
\(\left|\alpha\right> =\sum_{i}a_i\left|\alpha_i\right>\)
则称向量组 \(\left|\alpha_i\right>\) 是矢量空间 \(V\) 的一个基. 可用数组 \((a_1,a_2,\cdots a_n)\) 来表示矢量 \(\left|\alpha\right>\).
基中线性无关的向量的个数称为矢量空间的维数.
内积
\(\left|\alpha\right>\) 与 \(\left|\beta\right>\) 的内积是一个数记作 \(\left<\alpha|\beta\right>\)
如波函数可看作态矢 \(\psi(x)\longleftrightarrow \left|\psi\right>\)
则波函数的内积可写为
\[\int_{-\infty}^{+\infty} \psi_{1}^\ast(x)\psi_{2}(x) \mathrm{d}x=\left<\psi_{1}|\psi_{2}\right>\]
内积的性质
-
\(\left<\alpha|\beta\right> =\left<\beta|\alpha\right>^{\ast}\)
-
\(\left<\alpha|\alpha\right> \geqslant 0 ,\left<\alpha|\alpha\right> =0 \iff \left|\alpha\right> =\left|0\right>\)
-
\(\left<\alpha|(b\left|\beta\right> +c\left|\gamma\right> )\right. =b\left<\alpha|\beta\right> +c\left<\alpha|\gamma\right>\)
-
\(\left<\alpha|(b|\beta\right>)=b\left<\alpha|\beta\right> \quad \left<a\alpha|\beta\right> =a^{\ast}\left<\alpha|\beta\right>\)
-
\(\left<b\beta+c\gamma|\alpha\right> =b^{\ast}\left<\beta|\alpha\right> +c^{\ast}\left<\gamma|\alpha\right>\)
矢量的模
\[\left\| \alpha \right\|_{}=\sqrt{\left<\alpha|\alpha\right> }\]
单位矢量
\[\left|\hat{\alpha}\right> =\frac{\left|\alpha\right> }{\left\| \alpha \right\|_{}}\quad \left<\hat{\alpha}|\hat{\alpha}\right>=1\]
正交矢量
\[\left<\alpha_1|\alpha_2\right> =0\]
若基 \(\left\{ \left|\alpha_i\right> \right\}\) 满足\(\left<\alpha_i|\alpha_j\right> =\delta_{ij}\) 则称为标准正交基.
用正交基 \(\left\{ \left|\alpha_i\right> \right\}\) 来表示向量则有
\[
\begin{align}
&\left|\alpha\right> =\sum_{i}a_i\left|\alpha_i\right> \quad \left<\alpha|\alpha\right> =\sum_{i}a_i^{*}a_i=\sum_{i}\left| a_i \right|^{2}\\
&\left|\beta\right> =\sum_{i}b_i\left|\alpha_i\right> \quad \left<\alpha|\beta\right> =\sum_{i}a_i^{*}b_i
\end{align}
\]
Schwartz 不等式
\[\left| \left<\alpha|\beta\right> \right|^{2}\leqslant \left<\alpha|\alpha\right> \left<\beta|\beta\right>\]
矩阵
算符和线性变换 \(\hat{T}\) 可用矩阵表示.
\[\left|\alpha\right> \stackrel{\hat{T}}{\longrightarrow}\left|\alpha ^{\prime}\right> =\hat{T}\left|\alpha\right>\]
线性变换即
\[\hat{T}(a\left|\alpha\right> +b\left|\beta\right> )=a \hat{T}\left|\alpha\right> +b \hat{T}\left|\beta\right>\]
对于 \(n\) 维矢量空间的基 \(\left\{ \left|e_i\right> \right\}\)
\[\hat{T}\left|e_j\right> =\sum_{i}T_{ij}\left|e_i\right>\]
对于任意一个矢量 \(\left|\alpha\right> =\sum_{i}a_i\left|e_i\right>\), \(\left|\alpha^{\prime}\right> =\hat{T}\left|\alpha\right> =\sum_{i}a_i^{\prime}\left|e_i\right>\)
\(\hat{T}\left|\alpha\right> =\hat{T}\sum_{j}a_j\left|e_j\right> =\sum_{j}a_j \hat{T}\left|e_j\right> =\sum_{j}a_j \sum_{i}T_{ij}\left|e_i\right>=\sum_{i}\sum_{j}a_j \hat{T}_{ij}\left|e_i\right>\)m
则有
\[
a_i^{\prime}=\sum_{j}T_{ij}a_j\implies \boldsymbol{a}^{\prime}=\boldsymbol{T}\boldsymbol{a}\quad \begin{pmatrix} a^\prime_1 \ a^\prime_2 \ \vdots \ a^\prime_n \end{pmatrix}
\begin{pmatrix}
T_{11}&T _{12}&\cdots &T_{1n}\\
T_{21}&\cdots &\cdots &T_{2n}\\
\vdots& & & \vdots\\
T_{n_1}&\cdots &\cdots &T_{nn}
\end{pmatrix}
\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}
\]
算符与矩阵
- 算符的乘积
\[
\hat{S} \hat{T}\left|\alpha\right> =\hat{U} \left|\alpha\right> \quad \hat{S} \hat{T} =\hat{U} \quad U_{ik}=\sum_{j}S_{ij}T_{jk}
\]
- 矩阵的转置
\[
(\boldsymbol{O}^{\mathrm{T}})_{ij}=\boldsymbol{O}_{ji}
\]
对称矩阵 \(\boldsymbol{O}^{\mathrm{T}}=\boldsymbol{O}\) , 反对称矩阵 \(\boldsymbol{O}^{\mathrm{T}}=-\boldsymbol{O}\).
3. 复共轭矩阵
\[(\boldsymbol{O}^{\ast}_{ij})=(\boldsymbol{O}_{ij})^{\ast}\]
实矩阵 \(\boldsymbol{O}^{\ast}=\boldsymbol{O}\), 虚矩阵 \(\boldsymbol{O}^{\ast}=-\boldsymbol{O}\).
4. 厄米共轭
\[(\boldsymbol{O}^{\dagger})_{ij}=\boldsymbol{O}^{\dagger}_{ji}\]
厄米矩阵 \(\boldsymbol{O}^{\dagger}=\boldsymbol{O}\), 反厄米矩阵 \(\boldsymbol{O}^{\dagger}=-\boldsymbol{O}\) \
用向量表示则为
\[
\boldsymbol{a}=\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}
\quad \boldsymbol{a}^{\dagger}=\begin{pmatrix} a^\dagger_1, a^\dagger_2, \cdots, a^\dagger_n \end{pmatrix}
\]
内积也可用厄米矩阵表示
\[
\left<\alpha|\alpha\right> =\boldsymbol{a}^{\dagger}\boldsymbol{a}\quad\left<\alpha|\beta\right> =\boldsymbol{a}^{\dagger} \boldsymbol{b}\quad\left<\alpha\right|\hat{T} \left|\beta\right> =\boldsymbol{a}^{\dagger}\boldsymbol{T} \boldsymbol{b}
\]
- 矩阵乘积的转置、复共轭、厄米共轭
\[
(\boldsymbol{AB})^{\mathrm{T}}=\boldsymbol{B}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}\quad(\boldsymbol{AB})^{\ast}=\boldsymbol{A}^{\ast}\boldsymbol{B}^{\ast}\quad(\boldsymbol{AB})^{\dagger}=\boldsymbol{B}^{\dagger}\boldsymbol{A}^{\dagger}
\]
- 矩阵交换律 \(\boldsymbol{AB}\neq \boldsymbol{BA}\)
对易子
\[=\boldsymbol{AB}-\boldsymbol{BA}\]
若
\([\boldsymbol{A},\boldsymbol{B}]=0\) 则称 \(\boldsymbol{A,B}\)
具有对易关系
反对易子
\[\{\boldsymbol{A},\boldsymbol{B}\}=\boldsymbol{AB}+\boldsymbol{BA}\]
若 \(\{\boldsymbol{A},\boldsymbol{B}\}=0\) 则称\(\boldsymbol{A,B}\) 具有反对易关系
- 单位矩阵 \(\boldsymbol{I}\) \(\to\) 恒等算符 \(\hat{I}\)
\[\boldsymbol{I}\to \hat{I} \quad I_{ij}=\delta _{ij}\]
- 逆矩阵
\(\boldsymbol{A}\) 可逆, 当且仅当 \(\det \boldsymbol{A}\neq 0\), 且有
\[\det \boldsymbol{AB}=\det \boldsymbol{A}\det \boldsymbol{B}\quad (\boldsymbol{AB})^{-1}=\boldsymbol{B}^{-1}\boldsymbol{A}^{-1}\]
- 正交矩阵(实矩阵)
\[\boldsymbol{O}^{\mathrm{T}}\boldsymbol{O}=\boldsymbol{O}\boldsymbol{O}^{\mathrm{T}}=\boldsymbol{I}\]
- 幺正矩阵
\[\boldsymbol{U}^{\dagger}\boldsymbol{U}=\boldsymbol{U}\boldsymbol{U}^{\dagger}=\boldsymbol{I}\]
力学量的算符
坐标空间与动量空间
波函数
\(\psi(x)\) 实际上是态矢 \(\left|\psi\right>\) 在坐标空间 \(\left|x\right>\) 上的投影
\(\psi(x)=\left<x|\psi\right> \quad \left|\psi\right> =\int \psi(x)\left|x\right> \mathrm{d}x\)
\(\psi(x)\)可看作将 \(\left|\psi\right>\) 在坐标空间中分解时, 具有确定位置的态 \(\left|x\right>\) 所占的比例̱.
则粒子位置的期望值为
\(\left<x\right> =\int_{-\infty}^{+\infty} \left| \psi(x) \right|^{2} \mathrm{d}x=\int_{-\infty}^{+\infty} \psi^\ast(x)x\psi(x) \mathrm{d}x\)
同理动量的期望值为
\(\left<p\right> =\int_{-\infty}^{+\infty} \phi^{\ast}(p) p \phi(p) \mathrm{d}p\)
其中 \(\phi(p)\) 为将 \(\left|\psi\right>\) 在动量空间中分解时,具有确定动量 \(p\) 的态 \(\left|p\right>\) 所占的比例.
则同样有
\(\phi(p)=\left<p|\psi\right> \quad \left|\psi\right> =\int \phi(p)\left|p\right> \mathrm{d}p\)
已知具有确定动量的波函数 \(\frac{1}{\sqrt{2\pi\hbar} }\mathrm{e}^{\mathrm{i}px/\hbar}\)
即动量为 \(p\) 的本征态 \(\left|p\right>\). 则
\(\psi(x) =\int \phi(p) \frac{1}{\sqrt{2\pi\hbar} }\mathrm{e}^{\mathrm{i}px/\hbar}\mathrm{d}p\)
两边同乘 \(\frac{1}{\sqrt{2\pi\hbar} }\mathrm{e}^{-\mathrm{i}p^{\prime}x/\hbar}\) 再积分得
\[\begin{aligned}
\int\frac{1}{\sqrt{2\pi\hbar} }\mathrm{e}^{-\mathrm{i}p^{\prime}x/\hbar}\psi(x) \mathrm{d}x=&\iint \phi(p) \frac{1}{2\pi\hbar }\mathrm{e}^{\mathrm{i}(p-p^{\prime})x/\hbar}\mathrm{d}p \mathrm{d}x
\\
=&\int \phi(p) \int\frac{1}{2\pi\hbar }\mathrm{e}^{\mathrm{i}(p-p^{\prime})x/\hbar}\mathrm{d}x\mathrm{d}p \\
=&\int \phi(p) \delta(p-p^{\prime})\mathrm{d}p =\phi(p^{\prime})\,\,({\color{red}\int \mathrm{e}^{\mathrm{i}kx} \mathrm{d}x=2\pi \delta (k)})
\end{aligned}\]
即
\[\phi(p)=\int\frac{1}{\sqrt{2\pi\hbar} }\mathrm{e}^{-\mathrm{i}px/\hbar}\psi(x) \mathrm{d}x\]
\(\left| \phi(p) \right|^{2} \mathrm{d}p\) 表示粒子动量处于 \(p\to p+\mathrm{d}p\) 的概率
由上述讨论可知,在各自表象的波函数下,位置和动量的算符就是自身
利用上述关系也可得到在坐标表象下动量算符的表达式
\[\begin{aligned}
\left<p\right> =&\int_{-\infty}^{+\infty} \phi^{\ast}(p) p \phi(p) \mathrm{d}p
\\
=&\int_{-\infty}^{+\infty}\mathrm{d}p\int\frac{1}{\sqrt{2\pi\hbar} }\mathrm{e}^{\mathrm{i}px/\hbar}\psi^{\ast}(x) \mathrm{d}x\cdot p\cdot \int\frac{1}{\sqrt{2\pi\hbar} }\mathrm{e}^{-\mathrm{i}px^{\prime}/\hbar}\psi(x^{\prime}) \mathrm{d}x^{\prime}\\
=&\int \mathrm{d}x \mathrm{d}x^{\prime}\psi^{^{\ast}}(x)\int\frac{1}{2\pi\hbar}p\mathrm{e}^{\mathrm{i}p(x-x^{\prime})/\hbar} \mathrm{d}p \,\psi(x^{\prime})
\\=&
\int \mathrm{d}x \mathrm{d}x^{\prime}\psi^{^{\ast}}(x)\int\frac{1}{2\pi\hbar}(-\mathrm{i}\hbar \frac{\mathrm{d}}{\mathrm{d}x})\mathrm{e}^{\mathrm{i}p(x-x^{\prime})/\hbar} \mathrm{d}p \,\psi(x^{\prime})\\
=&\int \mathrm{d}x \mathrm{d}x^{\prime}\psi^{^{\ast}}(x)(-\mathrm{i}\hbar \frac{\mathrm{d}}{\mathrm{d}x})\delta (x-x^{\prime})\,\psi(x^{\prime})
=\int\mathrm{d}x \psi^{^{\ast}}(x)(-\mathrm{i}\hbar \frac{\mathrm{d}}{\mathrm{d}x})\psi(x)\\
=&\int \psi^{^{\ast}}(x) \hat{p} \psi(x)\mathrm{d}x\quad (\hat{p}=-\mathrm{i}\hbar \frac{\mathrm{d}}{\mathrm{d}x} )
\end{aligned}\]
写成三维形式为
\(\(\hat{p} =-\mathrm{i}\hbar \nabla\)\)
一般物理量的算符
对于其他的经典物理量算符都可按照经典形式写成 \(\hat{x}\) 和 \(\hat{p}\) 的组合(但要注意对易关系).
- 动能算符
\[\hat{T}=\frac{\hat{p}^{2}}{2m} =-\frac{\hbar^{2}}{2m}\nabla^{2}\]
- 角动量算符
\[\hat{L}=\hat{r} \times \hat{p}\]
使用 Levi-Civita 符号
\[\varepsilon_{ijk}=\left\{
\begin{aligned}
1&\quad ijk=123,231,312
\\-1&\quad ijk=132,213,321
\\0& \quad \rm otherwise
\end{aligned}
\right.\]
得
\[\hat{L} _{i}=\varepsilon_{ijk} \hat{x}_{j} \hat{p}_{k}\]
并且 Levi-Civita 符号有如下关系
\[\varepsilon_{ijk}\varepsilon_{imn}=\delta _{jm}\delta _{kn}-\delta _{jn}\delta _{km}\]
对易子的恒等式
\[\begin{aligned}
&[\hat{A}, \hat{A}]=0, \quad[\hat{A}, C]=0\\
&[\hat{A}, \hat{B}+\hat{C}]=[\hat{A}, \hat{B}]+[\hat{A}, \hat{C}] \\
&[\hat{A}, \hat{B} \hat{C}]=[\hat{A}, \hat{B}] \hat{C}+\hat{B}[\hat{A}, \hat{C}]\\
&[\hat{A} \hat{B}, \hat{C}]=\hat{A}[\hat{B}, \hat{C}]+[\hat{A}, \hat{C}] \hat{B}\\
&[\hat{A},[\hat{B}, \hat{C}]]+[\hat{B},[\hat{C}, \hat{A}]]+[\hat{C},[\hat{A}, \hat{B}]]=0\quad(\rm Jacobi \,\,identity)
\end{aligned}\]
角动量算符的对易关系
\[=\mathrm{i}\hbar\varepsilon_{ijk}x_k\quad[L_i,p_j]=\mathrm{i}\hbar\varepsilon_{ijk}p_k\quad[L_i,L_j]=\mathrm{i}\hbar\varepsilon_{ijk}L_k\]
证明如下
Proof.
1. \([L_i,x_j]=\mathrm{i}\hbar\varepsilon_{ijk}x_k\quad[L_i,p_j]=\mathrm{i}\hbar\varepsilon_{ijk}p_k\)
\[\begin{aligned}
[L_i,x_j]&=[\varepsilon_{ilm}x_l p_m,x_j]=
\varepsilon_{ilm}[x_l p_m,x_j]
\\
&=\varepsilon_{ilm}(x_l[p_m,x_j]+[x_l,x_j]p_m)\\
&=\varepsilon_{ilm}(-\mathrm{i}\hbar\delta _{mj}x_l+0)=-\mathrm{i}\hbar\varepsilon_{ilm}x_l\delta _{mj}=-\mathrm{i}\hbar\varepsilon_{ilj}x_l\qquad\qquad\qquad\qquad\\
&=\mathrm{i}\hbar\varepsilon_{ijk}x_k\qquad
\end{aligned}\]
对于 \([L_i,p_j]\) 同理可得.
-
\([L_i,L_j]=\mathrm{i}\hbar\varepsilon_{ijk}L_k\)
\[\begin{align}
[L_i,L_j]=&[\varepsilon_{iab}x_a p_b,\varepsilon_{jmn}x_m p_n]=\varepsilon_{iab}\varepsilon_{jmn}[x_a p_b,x_mp_n]\\
=&\varepsilon_{iab}\varepsilon_{jmn}\{x_a[p_b,x_m]p_n+x_a x_m[p_b,p_n]+[x_a,x_m]p_n p_b+x_m[x_a,p_n]p_b\}\\
=&\varepsilon_{iab}\varepsilon_{jmn}\{x_a(-\mathrm{i}\hbar\delta _{bm})p_n+x_a x_m\cdot 0+0\cdot p_n p_b+x_m(\mathrm{i}\hbar\delta _{an})p_b\}\\
=&\mathrm{i}\hbar\varepsilon_{iab}\varepsilon_{jmn}(\delta _{an}x_m p_b-\delta _{bm}x_a p_n)=\mathrm{i}\hbar\varepsilon_{inb}\varepsilon_{jmn}x_m p_b -\mathrm{i}\hbar\varepsilon_{iam}\varepsilon_{jmn}x_a p_n\\=&\mathrm{i}\hbar(\varepsilon_{nbi}\varepsilon_{njm}x_m p_b-\varepsilon_{mia}\varepsilon_{mnj}x_a p_n)\\
=&\mathrm{i}\hbar(\delta _{bj}\delta _{im}-\delta _{bm}\delta _{ij})x_m p_b -\mathrm{i}\hbar (\delta _{in} \delta_{aj}-\delta _{ij}\delta _{an} )x_a p_n\\=&\mathrm{i}\hbar(\delta _{bj}\delta _{im}x_m p_b -\delta _{in} \delta_{aj}x_a p_n)+\mathrm{i}\hbar\delta _{ij}(\delta _{an}x_a p_n-\delta _{bm}x_m p_b)\\
=&\mathrm{i}\hbar(\delta _{nj}\delta _{im}x_m p_n -\delta _{in} \delta_{mj}x_m p_n)+\mathrm{i}\hbar\delta _{ij}(x_n p_n-x_m p_m)\\=&\mathrm{i}\hbar\varepsilon_{kmn}\varepsilon_{kij}x_m p_n=\mathrm{i}\hbar \varepsilon_{ijk}(\varepsilon _{kmn}x_m p_n)=\mathrm{i}\hbar \varepsilon_{ijk}L_k
\end{align}\]
由此可推得对于任意矢量算符 \(\hat{V}\) 都有如下关系
\[[\hat{L}_{i},\hat{V}_{j}]=\mathrm{i}\hbar \varepsilon_{ijk}V_k\]
- 算符的幂
\[\hat{A}^{n} \equiv \underbrace{\hat{A} \cdot \hat{A} \cdots \hat{A}}_{n}\]
并且有 \(\hat{A}^{m+n}=\hat{A}^{m} \cdot \hat{A}^{n}\)
对于角动量平方算子 \(\vec{L}^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}\),
它和其中一个角动量分量的对易子为
\[\begin{aligned}
{\left[\vec{L}^{2}, L_{x}\right] } &=\left[L_{x}^{2}+L_{y}^{2}+L_{z}^{2}, L_{x}\right]=\left[L_{y}^{2}, L_{x}\right]+\left[L_{z}^{2}, L_{x}\right] \\
&=L_{y}\left[L_{y}, L_{x}\right]+\left[L_{y}, L_{x}\right] L_{y}+L_{z}\left[L_{z}, L_{x}\right]+\left[L_{z}, L_{x}\right] L_{z} \\
&=-i \hbar\left(L_{y} L_{z}+L_{z} L_{y}\right)+i \hbar\left(L_{z} L_{y}+L_{y} L_{z}\right) \\
&=0
\end{aligned}\]
也就是有 \(\left[\vec{L}, L_{i}\right]=0\).
- 算符的函数
\[f(\hat{A} )=c_0+c_1 \hat{A} +c_2 \hat{A}^{2}+\cdots +c_n \hat{A}^{n}\]
其中 \(c_1,c_2,\cdots ,c_n\) 为具有特定不同量纲的数
\[e^{\hat{A}}=\sum_{n=0}^{\infty} \frac{\hat{A}^{n}}{n !}\]
其中 \([\hat{A} ]=[c]\), \(c\) 是一个数
- 逆算符\
对于 \(\hat{A}\), 若存在 \(\hat{A}^{-1}\) 满足
\[\hat{A} \hat{A}^{-1}\left|\psi\right> =\hat{A}^{-1} \hat{A} \left|\psi\right> =\hat{I}\left|\psi\right>\]
则称 \(\hat{A}^{-1}\) 为 \(\hat{A}\) 的逆算符.
Hermitian 算符
- 态矢量的内积
对于两个态 \(\psi\) 和 \(\varphi\) 的内积为
\[(\psi, \varphi)=\langle\psi \mid \varphi\rangle\]
是一个数.
对于态 \(\psi\) 和 \(\varphi\) 的波函数
\(\psi(\boldsymbol{r},t)\) 和 \(\phi(\boldsymbol{r},t)\) 内积表示为
\[\int \psi^{*}(\boldsymbol{r},t) \varphi(\boldsymbol{r},t) \mathrm{d} \boldsymbol{r}\]
内积的性质
-
\[\langle\psi \mid \psi\rangle=\int|\psi|^{2} \mathrm{d}\boldsymbol{r}\geq 0\]
-
\[\langle\psi \mid \varphi\rangle=\langle\varphi \mid \psi\rangle^{*}\]
\[\begin{array}{l}
\left\langle\psi \mid C_{1} \varphi_{1}+C_{2} \varphi_{2}\right\rangle=C_{1}\left\langle\psi \mid \varphi_{1}\right\rangle+C_{2}\left\langle\psi \mid \varphi_{2}\right\rangle \\
\left\langle C_{1} \psi_{1}+C_{2} \psi_{2} \mid \varphi\right\rangle=C_{1}^{*}\left\langle\psi_{1} \mid \varphi\right\rangle+C_{2}^{*}\left\langle\psi_{2} \mid \varphi\right\rangle
\end{array}\]
-
复共轭
\[\hat{O}\to \hat{O}^{*}\]
如
\[p_{x}=-\mathrm{i} \hbar \partial_{x} \quad p_{x}^{*}=\mathrm{i} \hbar \partial_{x}=-p_{x}\]
- 转置算符
\[\hat{O}\to \hat{ O}^{\rm T}\,\text{or} \, \tilde{\hat{O}}\]
转置算符的定义满足
\[(\psi, \tilde{\hat{O} } \varphi)=\langle\psi \mid \tilde{\hat{O} } \varphi\rangle=\langle\varphi^{*} \mid\hat{O} \psi^{*}\rangle=\left(\varphi^{*},\hat{O} \psi^{*}\right)\]
则称
\[\tilde{\hat{O}}\]
为 \(\hat{O}\) 的转置算符, 可以证明
\[\widetilde{\hat{A} \hat{B} }=\tilde{ \hat{B}} \tilde{\hat{A}}\]
Proof
\[\begin{align} (\psi, \tilde{ \hat{B}} \tilde{A} \varphi)=\left((\tilde{A} \varphi)^{*}, \hat{B} \psi^{*}\right)=\left((\tilde{A} \varphi), \hat{B}^{*} \psi\right)^{*}\\=\left( \hat{B}^{*} \psi,(\tilde{\hat{A}} \varphi)\right)=\left(\varphi^{*}, \hat{A} \hat{B} \psi^{*}\right)=(\psi, \widetilde{\hat{A} \hat{B}} \varphi)\end{align}\]
对于动量算符可以证明
\(\frac{\tilde{\partial}}{\partial x}=-\frac{\partial}{\partial x}\),
证明如下 (其中采用了束缚态波函数, 对于非束缚态也成立)
Proof
\[\begin{aligned}\left(\varphi^{*}, \frac{\partial}{\partial x} \psi^{*}\right) &=\int_{-\infty}^{+\infty} \mathrm{d} x \varphi \frac{\partial}{\partial x} \psi^{*} \\&=\left.\varphi \psi^{*}\right|_{-\infty} ^{+\infty}-\int_{-\infty}^{+\infty} \mathrm{d} x \psi^{*} \frac{\partial}{\partial x} \varphi \\&=\int_{-\infty}^{+\infty} \mathrm{d} x \psi^{*}\left(-\frac{\partial}{\partial x}\right) \varphi \\&=\left(\psi,\left(-\frac{\partial}{\partial x}\right) \varphi\right)\end{aligned}\]
即
\[\tilde{\hat{p} }_{x}=-\hat{p} _{x}.\]
- Hermitian 共轭算符
定义
\[\hat{O}^{\dagger}=\tilde{\hat{O} }^{*}\]
性质
\[\langle\psi \mid \hat{O}^{\dagger} \varphi\rangle=\langle\psi \mid \tilde{ \hat{O}}^{*} \varphi\rangle=\langle\psi^{*} \mid \tilde{ \hat{O}} \varphi^{*}\rangle^{*}=\langle\varphi \mid \hat{O}\psi\rangle^{*}=\langle \hat{O} \psi \mid \varphi\rangle\]
Hermitian 共轭算符的乘积满足
\[(\hat{A} \hat{B} )^{\dagger}=\hat{B} ^{\dagger} \hat{A} ^{\dagger}\]
- Hermitian 算符\
定义
\[\hat{O}^\dagger=\hat{O}\]
称 \(\hat{O}\) 为厄米算符
性质
\[\langle \psi|\hat{O} \phi\rangle =\langle \hat{O} \psi|\phi\rangle\]
注:
-
如果
\(\hat{A} \hat{B}\) 都是厄米算符那么 \((\hat{A} \hat{B} )^\dagger=\hat{B}^{\dagger} \hat{A}^{\dagger}=\hat{B} \hat{A}\) \
厄米算符的乘积不一定为厄米算符, 只有当两个算符对易时才满足它们的乘积为厄米算符.
-
对于任意两个厄米算符
\(\hat{A} \hat{B}\)\(\(\frac{\hat{A}\hat{B} +\hat{B} \hat{A} }{2} \,,\,\frac{\hat{A} \hat{B} -\hat{B} \hat{A} }{2\mathrm{i}}\)\)
也是厄米算符.
-
任意一个算符 \(\hat{O}\) 都可以写成两个厄米算符的线性组合 \(\(\hat{O} =O_{+}+\mathrm{i}O_-\)\)
其中 \(O_+=\frac{O+O^{\dagger}}{2}\),
\(O_-=\frac{O-O^{\dagger}}{2\mathrm{i}}\) 都是厄米算符.
可观测量 \(\longrightarrow\) 厄米算符
厄米算符的本征值和本征函数
对于一个算符 \(\hat{F}\), 它的本征方程为
\(\(\hat{F} \left|\psi\right> =\lambda\left|\psi\right>\)\)
其中 \(\lambda\) 为 \(\hat{F}\) 的本征值 (\(\lambda \in \mathbb{R} \operatorname{or}\mathbb{C}\)),
\(\left|\psi\right>\) 为 \(\hat F\) 的本征态
可以有多个相互独立的态对应于同一个本征值, 称为简并, 简并度为相互独立的态的数目.
- 厄米算符的平均值在任何量子态下均为实数,在本征态下,即本征值为实数.
\(\(\langle\hat{F} \rangle=\langle \psi|\hat{F} |\psi\rangle =\langle \psi|\hat{F}^{\dagger} |\psi\rangle =\langle\hat{F} \psi|\psi\rangle=\langle \psi|\hat{F} |\psi\rangle ^\ast=\langle\hat{F} \rangle^\ast\)\)