Chapter 5 Continuous systems¶
Lagrangians and Hamiltonians¶
Lagrangians \(\displaystyle L(q_{i},\dot{q}_{i})\)
Euler-Lagrange equation \(\displaystyle \frac{ \partial L }{ \partial q_{i} }-\frac{\mathrm{d}}{\mathrm{d}t}\frac{ \partial L }{ \partial \dot{q}_{i} }=0\)
Canonical momentum \(\displaystyle p_{i}=\frac{ \partial L }{ \partial \dot{q_{i}} }\implies \frac{\mathrm{d}}{\mathrm{d}t}(p_{i}\dot{q}_{i}-L)=0\)
Hamiltonian \(\displaystyle H=p_{i}\dot{q}_{i}-L\implies \frac{\mathrm{d}H}{\mathrm{d}t}=0\)
Hamilton's equation
\(\frac{\partial H}{\partial p_{i}} =\dot{q}_{i},\quad \frac{\partial H }{ \partial q_{i} } =- \dot{p}_{i}\)
Poisson bracket \(\{ A,B \}_{\mathrm{PB}}=\frac{ \partial A }{ \partial q_{i} } \frac{ \partial B }{ \partial p_{i} } -\frac{ \partial A }{ \partial p_{i} } \frac{ \partial B }{ \partial q_{i} }\)
For any function \(\displaystyle F\) \(\displaystyle \frac{\mathrm{d}F}{\mathrm{d}t}=\frac{ \partial F }{ \partial t }+\{ F,H \}_{\mathrm{PB}}\)
In quantum mechanics \(\displaystyle \{ A, B \}_{\mathrm{PB}}\to \frac{1}{\mathrm{i\hbar}}\langle [\hat{A},\hat{B}] \rangle\)
A charged particle in an electromagnetic field¶
Example
Lagrangians (Free particle): \(\displaystyle L=- \frac{mc^{2}}{\gamma}\) Electromagnetic field tensor
Electromagnetic lagrangian \(L=-\frac{1}{4} \int \mathrm{d}^{3} x F_{\mu \nu} F^{\mu \nu}\)
Lagrangian and Hamiltonian density¶
Example
Conjugate momentum \(\displaystyle \pi (x)=\frac{ \partial \mathcal{L} }{ \partial \dot{\phi} }\implies \mathcal{H}=\pi \dot{\phi}-\mathcal{L}\) Four-vector version of Euler-Lagrange equation
Chapter 6 A first stab at relativistic quantum mechanics¶
Kelin-Gordon equation¶
Kelin-Gordon equation
which has a negative solution. Think these as positive energy antiparticles.
Note
Chapter 7 Examples of Lagrangians or how to write down a theory¶
A massless scalar field¶
Note
Example
Using the E-L equation with
we have
This is the wave equation \(\partial^{2} \phi=0\) or
and has wave-like solutions
with dispersion relation \(E_{\boldsymbol{p}}=c|\boldsymbol{p}|\) [though in our units \(c\)=1]
A massive scalar field¶
Lagrangian
Example
Using the Lagrangian
and hence plugging into the Euler-Lagrange equation we have
The equation of motion for this field theory is the Klein-Gordon equation! The solution of these equations is again \(\phi (\boldsymbol{x}, t)=a \mathrm{e}^{-\mathrm{i}\left (E_{\boldsymbol{p}} t-\boldsymbol{p} \cdot \boldsymbol{x}\right)}\) , with dispersion \(E_{\boldsymbol{p}}^{2}= \boldsymbol{p}^{2}+m^{2}\).
An external source¶
Note
Example