Chapter 1 Lagrangians¶
Functional¶
Functionals : \(F[f(x)]\to\) number Functional derivative : \(\displaystyle\frac{\delta F(f)}{\delta f(x)}=\lim_{ \varepsilon \to 0} \frac{F[f(x')+\varepsilon \delta(x-x') ]-F[f(x')]}{\varepsilon}\)
Example of Functional derivative
\(\displaystyle J[f]=\int [f(y)]^p\phi(y) \, \mathrm{d}y\) , \(\displaystyle \frac{\delta J}{\delta f}=p[f(y)]^{p-1}\)
\(\displaystyle H[f]=\int_{a}^{b} g(f) \, \mathrm{d}x,\, \frac{\delta H}{\delta f}=g'[f]\)
\(\displaystyle J[f]=\int g(f') \, \mathrm{d}x\) , \(\displaystyle \frac{ \delta H }{ \delta f }=-\frac{\mathrm{d}}{\mathrm{d}x}g'[f]\)
Lagrangians and least action¶
Action¶
Lagrangians density¶
Example
\(\displaystyle \mathcal{L}=\frac{1}{2}(\partial_\mu \phi)^{2}-\frac{1}{2}m^{2}\phi^{2}\) \(\displaystyle \frac{ \delta \mathcal{L} }{ \delta \phi }=-m^{2}\phi\quad \partial_\mu \frac{ \partial \mathcal{L} }{ \partial (\partial_\mu \phi) }=\partial_\mu \partial^{\mu}\phi=\partial^{2}\phi\quad \frac{ \delta S }{ \delta \phi}=-m^{2}\phi-\partial^{2}\phi=0\implies(\partial^{2}+m^{2})\phi=0\)
Notes: The derivative of tensor.
Chapter 2 Simple harmonic oscillators¶
First quantization: Particles behave like waves.
Second quantization: Waves behave like particles.
\(\displaystyle \hat{H}=\frac{\hat{p}^{2}}{2m}+\frac{1}{2}m\omega^{2}\hat{x}^{2}\) \(\displaystyle \hat{a}=\sqrt{ \frac{m\omega}{2\hbar} }\hat{x}+\frac{\mathrm{i}\hat{p}}{\sqrt{ 2m\omega \hbar }}\quad \hat{a}^{\dagger}=\sqrt{ \frac{m\omega}{2\hbar} }\hat{x}-\frac{\mathrm{i}\hat{p}}{\sqrt{ 2m\omega \hbar }}\) \(\displaystyle [\hat{a},\hat{a}^{\dagger}]=1\) \(\displaystyle \hat{a}\) and \(\displaystyle \hat{a}^{\dagger}\) are hermitian conjugate. \(\displaystyle \hat{a}\) and \(\displaystyle \hat{a}^{\dagger}\) operate on the state \(\displaystyle \ket{n}\) :
For \(N\) uncoupled simple harmonic oscillators. \(\displaystyle \hat{H}=\sum_{k=1}^{n}\hat{H}_{k} \quad \hat{H}_{k}=\frac{\hat{p}^{2}_{k}}{2m}+\frac{1}{2} m\omega^{2}_{k}\hat{x}^{2}_k\) Acting with an operator \(\displaystyle a_{k}\) only affects the number of quanta for the \(k\) th oscillator.
The operators will have the commutation rules:
vacuum state (ground state) \(\displaystyle \ket{0,0,\dots,0}\) (\(\displaystyle \ket{0}\)) \(\displaystyle \hat{a}_{k}\ket{0}=0\quad k=1,2,\dots,N\) A general state of the system, written as \(\mid n_{1}, n_{2}, \dots, n_{N} \rangle\) is known as the occupation number representation.
More succinctly
Chapter 3 Occupation number representation¶
Natural units , a particle in a box of size \(\displaystyle L\), then \(\displaystyle \psi(x)=\frac{1}{\sqrt{ L }}\mathrm{e}^{ \mathrm{i}px }\) boundary condition \(\displaystyle \psi (x)=\psi (x+L)\implies p_{m}=\frac{2\pi m}{L}\) Occupation number representation Describing the many-particle system by listing the number of identical particles in each quantum state. \(\displaystyle \ket{n_{1} ,n_{2},n_{3},\dots}\), \(\displaystyle n_{i}\) represent that there are \(\displaystyle n_{i}\) particles in state \(\displaystyle \ket{p_{i}}\).
A general state builded up by using \(\displaystyle \hat{a}_{k}^{\dagger}\) acting on the vacuum state \(\displaystyle \ket{0}\)
Indistinguish ability and symmetry¶
- \(\displaystyle \lambda=1\) Bosons
or
Commutation relation
\(\displaystyle [\hat{a}_{i},\hat{a}_{j}]=[\hat{a}^\dagger_{i},\hat{a}^\dagger_{j}]=0\), \(\displaystyle [\hat{a}_{i},\hat{a}^\dagger_{j}]=\delta_{ij}\)
acting on general state
- \(\displaystyle \lambda=-1\) Fermions¶
Pauli exclusion principle which means that each state can either be unoccupied or contain a single fermion. acting on general state
where \(\displaystyle (-1)^{\sum_{i}}=(-1)^{n_{1}+n_{2}+\dots+n_{i-1}}\)
The continuum limit¶
\(\displaystyle [\hat{a}_{\boldsymbol{p}},\hat{a}_{\boldsymbol{q}}]=\delta ^{(3)}(\boldsymbol{p}-\boldsymbol{q})\), \(\displaystyle \hat{H}=\int\mathrm{d}^{3}pE_{\boldsymbol{p}}\hat{a}_{\boldsymbol{p}}\hat{a}^\dagger_{\boldsymbol{p}}\)
Chapter 4 Making second quantization work¶
Filed operators¶
creates or annihilates a particle at position \(\displaystyle \boldsymbol{x}\).
Note
Bosons: \(\displaystyle [\hat{\psi}(\boldsymbol{x}),\hat{\psi}^{\dagger}(\boldsymbol{y})]=\delta^3(\boldsymbol{x}-\boldsymbol{y})\), \(\displaystyle [\hat{\psi}(\boldsymbol{x}),\hat{\psi}(\boldsymbol{y}) ]=[\hat{\psi}^{\dagger}(\boldsymbol{x}),\hat{\psi}^{\dagger}(\boldsymbol{y})]=0\) Fermions: \(\displaystyle \left\{ \hat{\psi}(\boldsymbol{x}),\hat{\psi}^{\dagger}(\boldsymbol{y}) \right\}=\delta^{3}(\boldsymbol{x}-\boldsymbol{y})\), \(\displaystyle \left\{ \hat{\psi}^{\dagger}(\boldsymbol{x}),\hat{\psi}^{\dagger}(\boldsymbol{y}) \right\}=\left\{ \hat{\psi}(\boldsymbol{x}),\hat{\psi}(\boldsymbol{y}) \right\}=0\)
How to second quantize an operator¶
!!! note Single-particle operator \(\displaystyle \to\) many-particles operator
where \(\displaystyle \mathcal{A}_{\alpha \beta}=\bra{\alpha}\hat{\mathcal{A}}\ket{\beta}\)
The operator \(\displaystyle \hat{\mathcal{A}}\) is a sum over all processes in which you use \(\displaystyle \hat{a}_{\beta}\) to remove a single particle in state \(\displaystyle \ket{\beta}\), multiply it by the matrix element \(\displaystyle \mathcal{A}_{\alpha \beta}\), and then use \(\displaystyle \hat{a}^\dagger_{\alpha}\) to place that particle into a final state \(\displaystyle \ket{\alpha}\).