Skip to content

Formula of Complex Analysis

Step Function (Heaviside Function)
\[ \theta(t)=\mathrm{i}\int_{-\infty}^{\infty} \, \frac{\mathrm{d}z}{2\pi} \frac{\mathrm{e}^{ -\mathrm{i}zt }}{z+i\varepsilon } \quad(\varepsilon \to 0 ) \]
Laplace Transform

Properties of the unilateral Laplace transform

Property Time domain \(s\) domain
Linearity \(a f(t) + b g(t)\) \({\displaystyle aF(s)+bG(s)\ }\)
Frequency-domain derivative \({\displaystyle tf(t)\ }\) \({\displaystyle -F'(s)\ }\)
Frequency-domain general derivatives \(t^{n}f(t)\) \((-1)^{n}F^{(n)}(s)\)
General Derivative \({\displaystyle f^{(n)}(t)\ }\) \({\displaystyle s^{n}F(s)-\sum _{k=1}^{n}s^{n-k}f^{(k-1)}(0^{+})\ }\)
Frequency-domain integration \({\displaystyle {\frac {1}{t}}f(t)\ }\) \({\displaystyle \int _{s}^{\infty }F(\sigma )\,d\sigma \ }\)
Time-domain integration \({\displaystyle \int _{0}^{t}f(\tau )\,d\tau =(u*f)(t)}\) \({\displaystyle {1 \over s}F(s)}\)
Frequency shifting \({\displaystyle e^{at}f(t)\ }\) \({\displaystyle F(s-a)\ }\)
Time shifting \({\displaystyle f(t-a)u(t-a)\ }\) \({\displaystyle e^{-as}F(s)\ }\)
Time scaling \({\displaystyle f(at)}\) \({\displaystyle {\frac {1}{a}}F\left({s \over a}\right)}\)
Multiplication \({\displaystyle f(t)g(t)}\) \({\displaystyle {\frac {1}{2\pi i}}\lim _{T\to \infty }\int _{c-iT}^{c+iT}F(\sigma )G(s-\sigma )\,d\sigma \ }\)
Convolution \({\displaystyle (f*g)(t)=\int _{0}^{t}f(\tau )g(t-\tau )\,d\tau }\) \({\displaystyle F(s)\cdot G(s)\ }\)
Complex conjugation \({\displaystyle f^{*}(t)}\) \({\displaystyle F^{*}(s^{*})}\)
Cross-correlation \({\displaystyle (f\star g)(t)=\int _{0}^{\infty }f(\tau )^{*}\,g(t+\tau )\,d\tau }\) \({\displaystyle F^{*}(-s^{*})\cdot G(s)}\)
Periodic function \({\displaystyle f(t)}\) \({\displaystyle {1 \over 1-e^{-Ts}}\int _{0}^{T}e^{-st}f(t)\,dt}\)
Periodic summation \(\({\displaystyle \sum _{n=0}^{\infty }f(t-Tn)u(t-Tn)}\quad{\displaystyle \sum _{n=0}^{\infty }(-1)^{n}f(t-Tn)u(t-Tn)}\)\) \({\displaystyle {\frac {1}{1-e^{-Ts}}}F(s)}\quad{\displaystyle {\frac {1}{1+e^{-Ts}}}F(s)}\)